Text Generation
	
	
	
	
	Transformers
	
	
	
	
	Safetensors
	
	
	
	
	PyTorch
	
	
	
	
	mistral
	
	
	
	
	Safetensors
	
	
	
		
	
	text-generation-inference
	
	
	
		
	
	
		Merge
	
	
	
	
	7b
	
	
	
	
	mistralai/Mistral-7B-Instruct-v0.1
	
	
	
	
	uukuguy/speechless-code-mistral-7b-v1.0
	
	
	
	
	code
	
	
	
	
	en
	
	
	
	
	jondurbin/airoboros-2.2
	
	
	
	
	Open-Orca/OpenOrca
	
	
	
	
	garage-bAInd/Open-Platypus
	
	
	
	
	WizardLM/WizardLM_evol_instruct_V2_196k
	
	
	
	
	TokenBender/python_eval_instruct_51k
	
	
	
		
	
	
		Eval Results
	
	
	
	
	conversational
	
	
metadata
			license: apache-2.0
tags:
  - Safetensors
  - mistral
  - text-generation-inference
  - merge
  - mistral
  - 7b
  - mistralai/Mistral-7B-Instruct-v0.1
  - uukuguy/speechless-code-mistral-7b-v1.0
  - transformers
  - pytorch
  - mistral
  - text-generation
  - code
  - en
  - dataset:jondurbin/airoboros-2.2
  - dataset:Open-Orca/OpenOrca
  - dataset:garage-bAInd/Open-Platypus
  - dataset:WizardLM/WizardLM_evol_instruct_V2_196k
  - dataset:TokenBender/python_eval_instruct_51k
  - license:apache-2.0
  - model-index
  - autotrain_compatible
  - endpoints_compatible
  - text-generation-inference
  - region:us
speechless-code-mistral-7b-v1.0-Mistral-7B-Instruct-v0.1
speechless-code-mistral-7b-v1.0-Mistral-7B-Instruct-v0.1 is a merge of the following models:
🧩 Configuration
slices:
  - sources:
      - model: mistralai/Mistral-7B-Instruct-v0.1
        layer_range: [0, 32]
      - model: uukuguy/speechless-code-mistral-7b-v1.0
        layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.1
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16
💻 Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "MaziyarPanahi/speechless-code-mistral-7b-v1.0-Mistral-7B-Instruct-v0.1"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
