File size: 3,928 Bytes
8cc9b23
 
427541b
8cc9b23
 
 
427541b
 
 
 
 
 
 
 
8cc9b23
 
 
 
 
 
 
 
 
 
 
427541b
8cc9b23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
427541b
 
 
 
 
5851f14
427541b
 
5851f14
427541b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from torch import tanh, Tensor
import torch.nn as nn
from dataclasses import dataclass
from abc import ABC, abstractmethod


@dataclass
class GeneratorConfig:
    channels: int = 3
    num_features: int = 64
    num_residuals: int = 12
    depth: int = 4


class BaseGenerator(ABC, nn.Module):
    def __init__(self, channels: int = 3):
        super().__init__()
        self.channels = channels

    @abstractmethod
    def forward(self, x: Tensor) -> Tensor:
        pass


class Generator(BaseGenerator):
    def __init__(self, cfg: GeneratorConfig):
        super().__init__(cfg.channels)
        self.cfg = cfg
        self.model = self._construct_model()

    def _construct_model(self):
        initial_layer = nn.Sequential(
            nn.Conv2d(
                self.cfg.channels,
                self.cfg.num_features,
                kernel_size=7,
                stride=1,
                padding=3,
                padding_mode="reflect",
            ),
            nn.ReLU(inplace=True),
        )

        down_blocks = nn.Sequential(
            ConvBlock(
                self.cfg.num_features,
                self.cfg.num_features * 2,
                kernel_size=3,
                stride=2,
                padding=1,
            ),
            ConvBlock(
                self.cfg.num_features * 2,
                self.cfg.num_features * 4,
                kernel_size=3,
                stride=2,
                padding=1,
            ),
        )

        residual_blocks = nn.Sequential(
            *[
                ResidualBlock(self.cfg.num_features * 4)
                for _ in range(self.cfg.num_residuals)
            ]
        )

        up_blocks = nn.Sequential(
            ConvBlock(
                self.cfg.num_features * 4,
                self.cfg.num_features * 2,
                down=False,
                kernel_size=3,
                stride=2,
                padding=1,
                output_padding=1,
            ),
            ConvBlock(
                self.cfg.num_features * 2,
                self.cfg.num_features,
                down=False,
                kernel_size=3,
                stride=2,
                padding=1,
                output_padding=1,
            ),
        )

        last_layer = nn.Conv2d(
            self.cfg.num_features,
            self.cfg.channels,
            kernel_size=7,
            stride=1,
            padding=3,
            padding_mode="reflect",
        )

        return nn.Sequential(
            initial_layer, down_blocks, residual_blocks, up_blocks, last_layer
        )

    def forward(self, x: Tensor) -> Tensor:
        return tanh(self.model(x))


class ConvBlock(nn.Module):
    def __init__(
        self, in_channels, out_channels, down=True, use_activation=True, **kwargs
    ):
        super().__init__()
        self.conv = nn.Sequential(
            nn.Conv2d(in_channels, out_channels, padding_mode="reflect", **kwargs)
            if down
            else nn.ConvTranspose2d(in_channels, out_channels, **kwargs),
            nn.InstanceNorm2d(out_channels),
            nn.ReLU(inplace=True) if use_activation else nn.Identity(),
        )

    def forward(self, x: Tensor) -> Tensor:
        return self.conv(x)


class ResidualBlock(nn.Module):
    def __init__(self, channels: int):
        super().__init__()
        self.block = nn.Sequential(
            ConvBlock(channels, channels, kernel_size=3, padding=1),
            ConvBlock(
                channels, channels, use_activation=False, kernel_size=3, padding=1
            ),
        )

    def forward(self, x: Tensor) -> Tensor:
        return x + self.block(x)

if __name__ == '__main__':
    import torch
    cfg = GeneratorConfig()
    generator = Generator(cfg)    
    generator.load_state_dict(torch.load('generator.pth'))
    generator.eval()

    out = generator(torch.randn([1, cfg.channels, 256, 256]))
    print(out.shape)