Upload model.py with huggingface_hub
Browse files
model.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import tanh, Tensor
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from omegaconf import DictConfig
|
| 4 |
+
from abc import ABC, abstractmethod
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class BaseGenerator(ABC, nn.Module):
|
| 8 |
+
def __init__(self, channels: int = 3):
|
| 9 |
+
super().__init__()
|
| 10 |
+
self.channels = channels
|
| 11 |
+
|
| 12 |
+
@abstractmethod
|
| 13 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 14 |
+
pass
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Generator(BaseGenerator):
|
| 18 |
+
def __init__(self, cfg: DictConfig):
|
| 19 |
+
super().__init__(cfg.channels)
|
| 20 |
+
self.cfg = cfg
|
| 21 |
+
self.model = self._construct_model()
|
| 22 |
+
|
| 23 |
+
def _construct_model(self):
|
| 24 |
+
initial_layer = nn.Sequential(
|
| 25 |
+
nn.Conv2d(
|
| 26 |
+
self.cfg.channels,
|
| 27 |
+
self.cfg.num_features,
|
| 28 |
+
kernel_size=7,
|
| 29 |
+
stride=1,
|
| 30 |
+
padding=3,
|
| 31 |
+
padding_mode="reflect",
|
| 32 |
+
),
|
| 33 |
+
nn.ReLU(inplace=True),
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
down_blocks = nn.Sequential(
|
| 37 |
+
ConvBlock(
|
| 38 |
+
self.cfg.num_features,
|
| 39 |
+
self.cfg.num_features * 2,
|
| 40 |
+
kernel_size=3,
|
| 41 |
+
stride=2,
|
| 42 |
+
padding=1,
|
| 43 |
+
),
|
| 44 |
+
ConvBlock(
|
| 45 |
+
self.cfg.num_features * 2,
|
| 46 |
+
self.cfg.num_features * 4,
|
| 47 |
+
kernel_size=3,
|
| 48 |
+
stride=2,
|
| 49 |
+
padding=1,
|
| 50 |
+
),
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
residual_blocks = nn.Sequential(
|
| 54 |
+
*[
|
| 55 |
+
ResidualBlock(self.cfg.num_features * 4)
|
| 56 |
+
for _ in range(self.cfg.num_residuals)
|
| 57 |
+
]
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
up_blocks = nn.Sequential(
|
| 61 |
+
ConvBlock(
|
| 62 |
+
self.cfg.num_features * 4,
|
| 63 |
+
self.cfg.num_features * 2,
|
| 64 |
+
down=False,
|
| 65 |
+
kernel_size=3,
|
| 66 |
+
stride=2,
|
| 67 |
+
padding=1,
|
| 68 |
+
output_padding=1,
|
| 69 |
+
),
|
| 70 |
+
ConvBlock(
|
| 71 |
+
self.cfg.num_features * 2,
|
| 72 |
+
self.cfg.num_features,
|
| 73 |
+
down=False,
|
| 74 |
+
kernel_size=3,
|
| 75 |
+
stride=2,
|
| 76 |
+
padding=1,
|
| 77 |
+
output_padding=1,
|
| 78 |
+
),
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
last_layer = nn.Conv2d(
|
| 82 |
+
self.cfg.num_features,
|
| 83 |
+
self.cfg.channels,
|
| 84 |
+
kernel_size=7,
|
| 85 |
+
stride=1,
|
| 86 |
+
padding=3,
|
| 87 |
+
padding_mode="reflect",
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
return nn.Sequential(
|
| 91 |
+
initial_layer, down_blocks, residual_blocks, up_blocks, last_layer
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 95 |
+
return tanh(self.model(x))
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
class ConvBlock(nn.Module):
|
| 99 |
+
def __init__(
|
| 100 |
+
self, in_channels, out_channels, down=True, use_activation=True, **kwargs
|
| 101 |
+
):
|
| 102 |
+
super().__init__()
|
| 103 |
+
self.conv = nn.Sequential(
|
| 104 |
+
nn.Conv2d(in_channels, out_channels, padding_mode="reflect", **kwargs)
|
| 105 |
+
if down
|
| 106 |
+
else nn.ConvTranspose2d(in_channels, out_channels, **kwargs),
|
| 107 |
+
nn.InstanceNorm2d(out_channels),
|
| 108 |
+
nn.ReLU(inplace=True) if use_activation else nn.Identity(),
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 112 |
+
return self.conv(x)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
class ResidualBlock(nn.Module):
|
| 116 |
+
def __init__(self, channels: int):
|
| 117 |
+
super().__init__()
|
| 118 |
+
self.block = nn.Sequential(
|
| 119 |
+
ConvBlock(channels, channels, kernel_size=3, padding=1),
|
| 120 |
+
ConvBlock(
|
| 121 |
+
channels, channels, use_activation=False, kernel_size=3, padding=1
|
| 122 |
+
),
|
| 123 |
+
)
|
| 124 |
+
|
| 125 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 126 |
+
return x + self.block(x)
|