|
--- |
|
license: mit |
|
language: |
|
- en |
|
- ko |
|
tags: |
|
- KT |
|
- K-intelligence |
|
- Mi:dm |
|
pipeline_tag: text-generation |
|
library_name: transformers |
|
--- |
|
|
|
<p align="center"> |
|
<br> |
|
<span style="font-size: 60px; font-weight: bold;">Mi:dm 2.0-Mini</span> |
|
</br> |
|
</p> |
|
<p align="center"> |
|
🤗 <a href="">Mi:dm 2.0 Models</a> | |
|
📜 Mi:dm 2.0 Technical Report* | |
|
📕 Mi:dm 2.0 Technical Blog* |
|
</p> |
|
|
|
<p align="center"><sub>*To be released soon</sub></p> |
|
|
|
<br> |
|
|
|
## News 📢 |
|
|
|
- 🔜 _(Coming Soon!) GGUF format model files will be available soon for easier local deployment._ |
|
- ⚡️`2025/07/04`: Released Mi:dm 2.0 Model collection on Hugging Face🤗. |
|
<br> |
|
<br> |
|
# Table of Contents |
|
|
|
- ___Overview___ |
|
- [Mi:dm 2.0](#midm-20) |
|
- [Quickstart](#quickstart) |
|
- [Evaluation](#evaluation) |
|
- ___Usage___ |
|
- [Run on Friendly.AI](#run-on-friendliai) |
|
- [Run on Your Local Machine](#run-on-your-local-machine) |
|
- [Deployment](#deployment) |
|
- [Tutorials](#tutorials) |
|
- ___More Information___ |
|
- [Limitation](#limitation) |
|
- [License](#license) |
|
- [Contact](#contact) |
|
|
|
<br> |
|
<br> |
|
|
|
# Overview |
|
|
|
### Mi:dm 2.0 |
|
|
|
Mi:dm 2.0 is a __"Korean-centric AI"__ model developed with KT's proprietary technology. __"Korean-centric AI"__ refers to a model that thoroughly internalizes the unique values, cognitive frameworks, and commonsense reasoning intrinsic to Korean society. It is not simply about processing and responding in Korean; it is about the profound understanding that reflects and respects the socio-cultural fabric of Korean norms and values. |
|
|
|
The newly introduced Mi:dm 2.0 model comes in two versions: |
|
|
|
* **Mi:dm 2.0-Mini** is a 2.3B parameter Dense small model, designed for seamless use in environments such as on-device settings and low-end GPUs. It was created by pruning and distilling the Base model. |
|
|
|
* **Mi:dm 2.0-Base** has 11.5B parameters and was designed to balance model size and performance by expanding an 8B scale model using the DuS (Depth-up Scaling) method. It's a practical model that can be applied to various real-world services, considering both performance and versatility. |
|
|
|
|
|
> [!Note] |
|
> Neither the pre-training nor the post-training data includes KT users' data. |
|
|
|
|
|
<br> |
|
|
|
### Quickstart |
|
|
|
Here is the code snippet to run conversational inference with the model: |
|
|
|
```python |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig |
|
|
|
model_name = "K-intelligence/Midm-2.0-Mini-Instruct" |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
trust_remote_code=True, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
generation_config = GenerationConfig.from_pretrained(model_name) |
|
|
|
prompt = "KT에 대해 소개해줘" |
|
|
|
# message for inference |
|
messages = [ |
|
{"role": "system", |
|
"content": "Mi:dm(믿:음)은 KT에서 개발한 AI 기반 어시스턴트이다."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
input_ids = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=True, |
|
add_generation_prompt=True, |
|
return_tensors="pt" |
|
) |
|
|
|
output = model.generate( |
|
input_ids.to("cuda"), |
|
generation_config=generation_config, |
|
eos_token_id=tokenizer.eos_token_id, |
|
max_new_tokens=128, |
|
do_sample=False, |
|
) |
|
print(tokenizer.decode(output[0])) |
|
``` |
|
|
|
> [!NOTE] |
|
> The `transformers` library should be version `4.45.0` or higher. |
|
|
|
<br> |
|
<br> |
|
|
|
# Evaluation |
|
|
|
#### English |
|
<table> |
|
<thead> |
|
<tr> |
|
<th colspan="2"><b>Benchmark</b></th> |
|
<th>Exaone-3.5-2.4B-inst</th> |
|
<th>Qwen3-4B</th> |
|
<th>Mi:dm 2.0-Mini-inst</th> |
|
<th>Exaone-3.5-7.8B-inst</th> |
|
<th>Qwen3-14B</th> |
|
<th>Llama-3.1-8B-inst</th> |
|
<th>Mi:dm 2.0-Base-inst</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<tr> |
|
<td rowspan="1"><b>Instruction Following</b></td> |
|
<td><b>IFEval</b></td> |
|
<td align="center">81.1</td> |
|
<td align="center">79.7</td> |
|
<td align="center">73.6</td> |
|
<td align="center">83.6</td> |
|
<td align="center">83.9</td> |
|
<td align="center">79.9</td> |
|
<td align="center"><b>84.0</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="4"><b>Reasoning</b></td> |
|
<td><b>BBH</b></td> |
|
<td align="center">46.4</td> |
|
<td align="center">79.0</td> |
|
<td align="center">44.5</td> |
|
<td align="center">50.1</td> |
|
<td align="center">83.4</td> |
|
<td align="center">60.3</td> |
|
<td align="center"><b>77.7</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>GPQA</b></td> |
|
<td align="center">28.1</td> |
|
<td align="center">39.8</td> |
|
<td align="center">26.6</td> |
|
<td align="center">33.1</td> |
|
<td align="center">49.8</td> |
|
<td align="center">21.6</td> |
|
<td align="center"><b>33.5</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>MuSR</b></td> |
|
<td align="center">49.7</td> |
|
<td align="center">58.5</td> |
|
<td align="center">51.7</td> |
|
<td align="center">51.2</td> |
|
<td align="center">57.7</td> |
|
<td align="center">50.3</td> |
|
<td align="center"><b>51.9</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>Avg.</b></td> |
|
<td align="center">41.4</td> |
|
<td align="center">59.1</td> |
|
<td align="center">40.9</td> |
|
<td align="center">44.8</td> |
|
<td align="center">63.6</td> |
|
<td align="center">44.1</td> |
|
<td align="center"><b>54.4</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="2"><b>Mathematics</b></td> |
|
<td><b>GSM8K</b></td> |
|
<td align="center">82.5</td> |
|
<td align="center">90.4</td> |
|
<td align="center">83.1</td> |
|
<td align="center">81.1</td> |
|
<td align="center">88.0</td> |
|
<td align="center">81.2</td> |
|
<td align="center"><b>91.6</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>MBPP+</b></td> |
|
<td align="center">59.8</td> |
|
<td align="center">62.4</td> |
|
<td align="center">60.9</td> |
|
<td align="center">79.4</td> |
|
<td align="center">73.4</td> |
|
<td align="center">81.8</td> |
|
<td align="center"><b>77.5</b></td> |
|
</tr> |
|
<tr> |
|
<td rowspan="3"><b>General Knowledge</b></td> |
|
<td><b>MMLU-pro</b></td> |
|
<td align="center">-</td> |
|
<td align="center">-</td> |
|
<td align="center">-</td> |
|
<td align="center">40.7</td> |
|
<td align="center">70.5</td> |
|
<td align="center">47.6</td> |
|
<td align="center"><b>53.3</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>MMLU</b></td> |
|
<td align="center">59.5</td> |
|
<td align="center">73.3</td> |
|
<td align="center">56.5</td> |
|
<td align="center">69.0</td> |
|
<td align="center">82.7</td> |
|
<td align="center">70.7</td> |
|
<td align="center"><b>73.7</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>Avg.</b></td> |
|
<td align="center">59.5</td> |
|
<td align="center">73.3</td> |
|
<td align="center">56.5</td> |
|
<td align="center">54.8</td> |
|
<td align="center"><b>76.6</b></td> |
|
<td align="center">59.2</td> |
|
<td align="center">63.5</td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
#### Korean |
|
<table> |
|
<thead> |
|
<tr> |
|
<th colspan="2"><b>Benchmark</b></th> |
|
<th>Exaone-3.5-2.4B-inst</th> |
|
<th>Qwen3-4B</th> |
|
<th>Mi:dm 2.0-Mini-inst</th> |
|
<th>Exaone-3.5-7.8B-inst</th> |
|
<th>Qwen3-14B</th> |
|
<th>Llama-3.1-8B-inst</th> |
|
<th>Mi:dm 2.0-Base-inst</th> |
|
</tr> |
|
</thead> |
|
<tbody> |
|
<!-- Comprehension --> |
|
<tr> |
|
<td rowspan="5"><b>Comprehension</b></td> |
|
<td><b>K-Prag*</b></td> |
|
<td align="center">68.7</td> |
|
<td align="center">73.9</td> |
|
<td align="center">69.5</td> |
|
<td align="center">73.5</td> |
|
<td align="center"><b>86.7</b></td> |
|
<td align="center">59.9</td> |
|
<td align="center">86.5</td> |
|
</tr> |
|
<tr> |
|
<td><b>K-Refer-Hard*</b></td> |
|
<td align="center">58.5</td> |
|
<td align="center">56.7</td> |
|
<td align="center">55.4</td> |
|
<td align="center">61.9</td> |
|
<td align="center"><b>74.0</b></td> |
|
<td align="center">48.6</td> |
|
<td align="center">70.8</td> |
|
</tr> |
|
<tr> |
|
<td><b>Ko-Best</b></td> |
|
<td align="center">87.2</td> |
|
<td align="center">91.5</td> |
|
<td align="center">80.5</td> |
|
<td align="center">92.0</td> |
|
<td align="center">93.9</td> |
|
<td align="center">77.4</td> |
|
<td align="center"><b>95.2</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>Ko-Sovereign*</b></td> |
|
<td align="center">38.0</td> |
|
<td align="center">43.5</td> |
|
<td align="center">42.5</td> |
|
<td align="center">44.0</td> |
|
<td align="center">52.0</td> |
|
<td align="center">31.5</td> |
|
<td align="center"><b>53.0</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>Avg.</b></td> |
|
<td align="center">62.5</td> |
|
<td align="center">66.6</td> |
|
<td align="center">61.9</td> |
|
<td align="center">67.2</td> |
|
<td align="center"><b>76.8</b></td> |
|
<td align="center">51.5</td> |
|
<td align="center">76.1</td> |
|
</tr> |
|
<tr> |
|
<td rowspan="5"><b>Reasoning</b></td> |
|
<td><b>Ko-Winogrande</b></td> |
|
<td align="center">60.3</td> |
|
<td align="center"><b>67.5</b></td> |
|
<td align="center">61.7</td> |
|
<td align="center">64.6</td> |
|
<td align="center">77.2</td> |
|
<td align="center">40.1</td> |
|
<td align="center">75.1</td> |
|
</tr> |
|
<tr> |
|
<td><b>Ko-Best</b></td> |
|
<td align="center">64.1</td> |
|
<td align="center"><b>69.2</b></td> |
|
<td align="center">64.5</td> |
|
<td align="center">60.3</td> |
|
<td align="center">75.4</td> |
|
<td align="center">26.0</td> |
|
<td align="center">73.0</td> |
|
</tr> |
|
<tr> |
|
<td><b>LogicKor*</b></td> |
|
<td align="center"><b>7.4</b></td> |
|
<td align="center">5.6</td> |
|
<td align="center">7.7</td> |
|
<td align="center">8.6</td> |
|
<td align="center">6.4</td> |
|
<td align="center">2.4</td> |
|
<td align="center">8.6</td> |
|
</tr> |
|
<tr> |
|
<td><b>HRM8K*</b></td> |
|
<td align="center">38.5</td> |
|
<td align="center"><b>56.7</b></td> |
|
<td align="center">39.9</td> |
|
<td align="center">49.7</td> |
|
<td align="center">64.5</td> |
|
<td align="center">30.9</td> |
|
<td align="center">52.9</td> |
|
</tr> |
|
<tr> |
|
<td><b>Avg.</b></td> |
|
<td align="center">36.7</td> |
|
<td align="center"><b>43.8</b></td> |
|
<td align="center">37.4</td> |
|
<td align="center">39.5</td> |
|
<td align="center">48.8</td> |
|
<td align="center">19.8</td> |
|
<td align="center">44.8</td> |
|
</tr> |
|
<!-- Society & Culture --> |
|
<tr> |
|
<td rowspan="5"><b>Society & Culture</b></td> |
|
<td><b>K-Refer*</b></td> |
|
<td align="center">64.0</td> |
|
<td align="center">53.6</td> |
|
<td align="center">66.4</td> |
|
<td align="center">71.6</td> |
|
<td align="center">72.4</td> |
|
<td align="center">43.2</td> |
|
<td align="center"><b>89.6</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>K-Refer-Hard*</b></td> |
|
<td align="center">67.1</td> |
|
<td align="center">42.9</td> |
|
<td align="center">61.4</td> |
|
<td align="center">69.3</td> |
|
<td align="center">65.7</td> |
|
<td align="center">36.4</td> |
|
<td align="center"><b>86.4</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>Ko-Sovereign*</b></td> |
|
<td align="center">44.4</td> |
|
<td align="center">35.8</td> |
|
<td align="center">36.7</td> |
|
<td align="center">46.9</td> |
|
<td align="center"><b>49.8</b></td> |
|
<td align="center">33.8</td> |
|
<td align="center">56.3</td> |
|
</tr> |
|
<tr> |
|
<td><b>HAERAE*</b></td> |
|
<td align="center">61.3</td> |
|
<td align="center">50.6</td> |
|
<td align="center">70.8</td> |
|
<td align="center">72.9</td> |
|
<td align="center">68.4</td> |
|
<td align="center">49.5</td> |
|
<td align="center"><b>81.5</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>Avg.</b></td> |
|
<td align="center">59.2</td> |
|
<td align="center">45.7</td> |
|
<td align="center">58.8</td> |
|
<td align="center">65.2</td> |
|
<td align="center">64.1</td> |
|
<td align="center">40.7</td> |
|
<td align="center"><b>78.4</b></td> |
|
</tr> |
|
<!-- Reasoning (Domain) --> |
|
<tr> |
|
<td rowspan="3"><b>Reasoning (Domain)</b></td> |
|
<td><b>KMMLU</b></td> |
|
<td align="center">43.5</td> |
|
<td align="center">50.6</td> |
|
<td align="center">45.1</td> |
|
<td align="center">52.6</td> |
|
<td align="center">55.4</td> |
|
<td align="center">33.0</td> |
|
<td align="center"><b>57.3</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>Ko-Sovereign*</b></td> |
|
<td align="center">42.4</td> |
|
<td align="center">42.5</td> |
|
<td align="center">42.4</td> |
|
<td align="center">45.6</td> |
|
<td align="center">54.7</td> |
|
<td align="center">36.7</td> |
|
<td align="center"><b>58.0</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>Avg.</b></td> |
|
<td align="center">43.0</td> |
|
<td align="center">46.5</td> |
|
<td align="center">43.8</td> |
|
<td align="center">49.1</td> |
|
<td align="center">55.1</td> |
|
<td align="center">34.8</td> |
|
<td align="center"><b>57.7</b></td> |
|
</tr> |
|
<!-- Instruction Following --> |
|
<tr> |
|
<td rowspan="3"><b>Instruction Following</b></td> |
|
<td><b>Ko-IFEval*</b></td> |
|
<td align="center">65.4</td> |
|
<td align="center">75.9</td> |
|
<td align="center">73.3</td> |
|
<td align="center">69.1</td> |
|
<td align="center"><b>83.6</b></td> |
|
<td align="center">60.1</td> |
|
<td align="center">82.0</td> |
|
</tr> |
|
<tr> |
|
<td><b>Ko-MTBench</b></td> |
|
<td align="center">74.0</td> |
|
<td align="center">63.0</td> |
|
<td align="center">74.0</td> |
|
<td align="center">79.6</td> |
|
<td align="center">71.0</td> |
|
<td align="center">57.0</td> |
|
<td align="center"><b>89.7</b></td> |
|
</tr> |
|
<tr> |
|
<td><b>Avg.</b></td> |
|
<td align="center">68.9</td> |
|
<td align="center">69.4</td> |
|
<td align="center">73.6</td> |
|
<td align="center">74.4</td> |
|
<td align="center">77.3</td> |
|
<td align="center">58.5</td> |
|
<td align="center"><b>85.9</b></td> |
|
</tr> |
|
</tbody> |
|
</table> |
|
|
|
`*` indicates KT proprietary evaluation resources. |
|
|
|
<br> |
|
|
|
# Usage |
|
|
|
### Run on Friendli.AI |
|
You can try our model immediately via `Friendli.AI`. Simply click `Deploy` and then `Friendli Endpoints`. |
|
|
|
> [!Note] |
|
> Please note that a login to `Friendli.AI` is required after your fifth chat interaction. |
|
|
|
<p> |
|
<img src="./assets/image_1.png" alt="Left Image" width="36%" style="display:inline-block; margin-right:2%"> |
|
<img src="./assets/image_2.png" alt="Right Image" width="36%" style="display:inline-block"> |
|
</p> |
|
|
|
### Run on Your Local Machine |
|
We provide a detailed description about running Mi:dm 2.0 on your local machine using llama.cpp, LM Studio, and Ollama. Please check our [github]() for more information |
|
|
|
|
|
### Deployment |
|
|
|
To serve Mi:dm 2.0 using [vLLM](https://github.com/vllm-project/vllm)(`>=0.8.0`) with an OpenAI-compatible API: |
|
```bash |
|
vllm serve K-intelligence/Midm-2.0-Mini-Instruct |
|
``` |
|
|
|
|
|
### Tutorials |
|
To help our end-users easily use Mi:dm 2.0, we have provided comprehensive tutorials on [github](). |
|
<br> |
|
|
|
<br> |
|
<br> |
|
|
|
# More Information |
|
|
|
### Limitation |
|
* The training data for both Mi:dm 2.0 models consists primarily of English and Korean. Understanding and generation in other languages are not guaranteed. |
|
|
|
* The model is not guaranteed to provide reliable advice in fields that require professional expertise, such as law, medicine, or finance. |
|
|
|
* Researchers have made efforts to exclude unethical content from the training data — such as profanity, slurs, bias, and discriminatory language. However, despite these efforts, the model may still produce inappropriate expressions or factual inaccuracies. |
|
|
|
|
|
### License |
|
|
|
Mi:dm 2.0 is licensed under the [MIT License](./LICENSE). |
|
|
|
<!-- ### Citation |
|
|
|
``` |
|
@misc{, |
|
title={}, |
|
author={}, |
|
year={2025}, |
|
eprint={}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={}, |
|
} |
|
``` --> |
|
### Contact |
|
- Mi:dm 2.0 Technical Inquiries: [email protected] |
|
|
|
<br> |