File size: 5,258 Bytes
88885fa
 
 
 
 
d54fe4d
88885fa
 
f619c10
 
 
 
 
3bfa588
f619c10
 
 
 
 
 
71d77bb
 
 
 
 
3bfa588
f619c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f43073
 
 
a6fb2e8
 
5f43073
f619c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
604c0cf
f619c10
 
 
 
 
 
 
 
 
 
 
cfa4338
 
a6fb2e8
cfa4338
5f43073
 
 
cfa4338
 
 
a6fb2e8
cfa4338
f619c10
cfa4338
 
 
 
f619c10
 
 
5f43073
f619c10
 
 
 
 
 
 
69d5c76
f619c10
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
base_model:
- Qwen/Qwen3-4B
pipeline_tag: text-generation
library_name: transformers
license: apache-2.0
---

![image/png](https://cdn-uploads.huggingface.co/production/uploads/63466107f7bd6326925fc770/b6xfld0bUDDAQIFvMCapD.png)

# II-Search-4B



<aside>

A 4B parameter language model specialized in information seeking, multi-hop reasoning, and web-integrated search, achieving state-of-the-art performance among models of similar size.

</aside>


![image/png](https://cdn-uploads.huggingface.co/production/uploads/63466107f7bd6326925fc770/rUpsG4-X9ZdO6JVEp6xVO.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/63466107f7bd6326925fc770/83kNxbdWU8mk8lqLZ9Gnb.png)

## Model Description

II-Search-4B is a 4B parameter language model based on Qwen3-4B, fine-tuned specifically for information seeking tasks and web-integrated reasoning. It excels at complex multi-hop information retrieval, fact verification, and comprehensive report generation.

### Key Features

- Enhanced tool usage for web search and webpage visits
- Multi-hop reasoning capabilities with sophisticated planning
- Verified information retrieval with cross-checking
- Strong performance on factual QA benchmarks
- Comprehensive report generation for research queries

## Training Methodology

Our training process consisted of three key phases:

### Phase 1: Tool Call Ability Stimulation

We used a distillation approach from larger models (Qwen3-235B) to generate reasoning paths with function calling on multi-hop datasets. This established the base capabilities for tool use.

### Phase 2: Reasoning Improvement

We addressed initial limitations by:

- Creating synthetic problems requiring more reasoning turns, inspired by Random Walk algorithm
- Improving reasoning thought patterns for more efficient and cleaner reasoning paths

### Phase 3: Rejection Sampling & Report Generation

We applied:

- Filtering to keep only high-quality reasoning traces (correct answers with proper reasoning)
- STORM-inspired techniques to enhance comprehensive report generation

### Phase 4: Reinforcement Learning

We trained the model using reinforcement learning
- Used dataset: [dgslibisey/MuSiQue](https://huggingface.co/datasets/dgslibisey/MuSiQue)
- Incorporated our in-house search database (containing Wiki data, Fineweb data, and ArXiv data)

## Performance

| **Benchmark** | **Qwen3-4B** | **Jan-4B** | **WebSailor-3B** | **II-Search-4B** |
| --- | --- | --- | --- | --- |
| OpenAI/SimpleQA | 76.8 | 80.1 | 81.8 | 91.8 |
| Google/Frames | 30.7 | 24.8 | 34.0 | 67.5 |
| Seal_0 | 6.31 | 2.7 | 1.8 | 22.5 |

### Tool Usage Comparison

**Simple QA (SerpDev)**

|  | **Qwen3-4B** | **Jan-4B** | **WebSailor-3B** | **II-Search-4B** |
| --- | --- | --- | --- | --- |
| # Search | 1.0 | 0.9 | 2.1 | 2.2 |
| # Visit | 0.1 | 1.9 | 6.4 | 3.5 |
| # Total Tools | 1.1 | 2.8 | 8.5 | 5.7 |

All benchmark traces from models can be found at: https://huggingface.co/datasets/Intelligent-Internet/II-Search-Benchmark-Details

## Intended Use

II-Search-4B is designed for:

- Information seeking and factual question answering
- Research assistance and comprehensive report generation
- Fact verification and evidence-based reasoning
- Educational and research applications requiring factual accuracy

## Usage
To deploy and interact with the II-Search-4B model effectively, follow these options:
1. Serve the model using vLLM or SGLang

Use the following command to serve the model with vLLM (adjust parameters as needed for your hardware setup):
```bash
vllm serve Intelligent-Internet/II-Search-4B --served-model-name II-Search-4B --tensor-parallel-size 8 --enable-reasoning --reasoning-parser deepseek_r1 --rope-scaling '{"rope_type":"yarn","factor":1.5,"original_max_position_embeddings":98304}' --max-model-len 131072
```
This configuration enables distributed tensor parallelism across 8 GPUs, reasoning capabilities, custom RoPE scaling for extended context, and a maximum context length of 131,072 tokens.

2. Integrate web_search and web_visit tools

Equip the served model with web_search and web_visit tools to enable internet-aware functionality. Alternatively, use a middleware like MCP for tool integration—see this example repository: https://github.com/hoanganhpham1006/mcp-server-template.

## Host on macOS with MLX for local use
 As an alternative for Apple Silicon users, host the quantized [II-Search-4B-MLX](https://huggingface.co/Intelligent-Internet/II-Search-4B-MLX) version on your Mac. Then, interact with it via user-friendly interfaces like LM Studio or Ollama Desktop.

## Recommended Generation Parameters

```python
generate_cfg = {
    'top_k': 20,
    'top_p': 0.95,
    'temperature': 0.6,
    'repetition_penalty': 1.1,
    'max_tokens': 2048
}
```

- For a query that you need to find a short and accurate answer. Add the following phrase: "\n\nPlease reason step-by-step and put the final answer within \\\\boxed{}."

## Citation

```
@misc{II-Search-4B,
  author = {Intelligent Internet},
  title = {II-Search-4B: Information Seeking and Web-Integrated Reasoning LLM},
  year = {2025},
  publisher = {Hugging Face},
  journal = {Hugging Face Hub},
  howpublished = {\url{https://huggingface.co/II-Vietnam/II-Search-4B}},
}

```