Update README.md
Browse files
README.md
CHANGED
@@ -46,8 +46,8 @@ We applied:
|
|
46 |
### Phase 4: Reinforcement Learning
|
47 |
|
48 |
We trained the model using reinforcement learning
|
49 |
-
-
|
50 |
-
- Incorporated our in-house search database (containing Wiki data, Fineweb data, and
|
51 |
|
52 |
## Performance
|
53 |
|
@@ -81,6 +81,7 @@ II-Search-4B is designed for:
|
|
81 |
## Usage
|
82 |
To deploy and interact with the II-Search-4B model effectively, follow these options:
|
83 |
1. Serve the model using vLLM or SGLang
|
|
|
84 |
Use the following command to serve the model with vLLM (adjust parameters as needed for your hardware setup):
|
85 |
```bash
|
86 |
vllm serve Intelligent-Internet/II-Search-4B --served-model-name II-Search-4B --tensor-parallel-size 8 --enable-reasoning --reasoning-parser deepseek_r1 --rope-scaling '{"rope_type":"yarn","factor":1.5,"original_max_position_embeddings":98304}' --max-model-len 131072
|
@@ -88,6 +89,7 @@ vllm serve Intelligent-Internet/II-Search-4B --served-model-name II-Search-4B --
|
|
88 |
This configuration enables distributed tensor parallelism across 8 GPUs, reasoning capabilities, custom RoPE scaling for extended context, and a maximum context length of 131,072 tokens.
|
89 |
|
90 |
2. Integrate web_search and web_visit tools
|
|
|
91 |
Equip the served model with web_search and web_visit tools to enable internet-aware functionality. Alternatively, use a middleware like MCP for tool integration—see this example repository: https://github.com/hoanganhpham1006/mcp-server-template.
|
92 |
|
93 |
## Host on macOS with MLX for local use
|
|
|
46 |
### Phase 4: Reinforcement Learning
|
47 |
|
48 |
We trained the model using reinforcement learning
|
49 |
+
- Used dataset: [dgslibisey/MuSiQue](https://huggingface.co/datasets/dgslibisey/MuSiQue)
|
50 |
+
- Incorporated our in-house search database (containing Wiki data, Fineweb data, and ArXiv data)
|
51 |
|
52 |
## Performance
|
53 |
|
|
|
81 |
## Usage
|
82 |
To deploy and interact with the II-Search-4B model effectively, follow these options:
|
83 |
1. Serve the model using vLLM or SGLang
|
84 |
+
|
85 |
Use the following command to serve the model with vLLM (adjust parameters as needed for your hardware setup):
|
86 |
```bash
|
87 |
vllm serve Intelligent-Internet/II-Search-4B --served-model-name II-Search-4B --tensor-parallel-size 8 --enable-reasoning --reasoning-parser deepseek_r1 --rope-scaling '{"rope_type":"yarn","factor":1.5,"original_max_position_embeddings":98304}' --max-model-len 131072
|
|
|
89 |
This configuration enables distributed tensor parallelism across 8 GPUs, reasoning capabilities, custom RoPE scaling for extended context, and a maximum context length of 131,072 tokens.
|
90 |
|
91 |
2. Integrate web_search and web_visit tools
|
92 |
+
|
93 |
Equip the served model with web_search and web_visit tools to enable internet-aware functionality. Alternatively, use a middleware like MCP for tool integration—see this example repository: https://github.com/hoanganhpham1006/mcp-server-template.
|
94 |
|
95 |
## Host on macOS with MLX for local use
|