hoanganhpham commited on
Commit
a6fb2e8
·
verified ·
1 Parent(s): cfa4338

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -2
README.md CHANGED
@@ -46,8 +46,8 @@ We applied:
46
  ### Phase 4: Reinforcement Learning
47
 
48
  We trained the model using reinforcement learning
49
- - UsedDataset: MuSiQue (19k samples)
50
- - Incorporated our in-house search database (containing Wiki data, Fineweb data, and arXiv data)
51
 
52
  ## Performance
53
 
@@ -81,6 +81,7 @@ II-Search-4B is designed for:
81
  ## Usage
82
  To deploy and interact with the II-Search-4B model effectively, follow these options:
83
  1. Serve the model using vLLM or SGLang
 
84
  Use the following command to serve the model with vLLM (adjust parameters as needed for your hardware setup):
85
  ```bash
86
  vllm serve Intelligent-Internet/II-Search-4B --served-model-name II-Search-4B --tensor-parallel-size 8 --enable-reasoning --reasoning-parser deepseek_r1 --rope-scaling '{"rope_type":"yarn","factor":1.5,"original_max_position_embeddings":98304}' --max-model-len 131072
@@ -88,6 +89,7 @@ vllm serve Intelligent-Internet/II-Search-4B --served-model-name II-Search-4B --
88
  This configuration enables distributed tensor parallelism across 8 GPUs, reasoning capabilities, custom RoPE scaling for extended context, and a maximum context length of 131,072 tokens.
89
 
90
  2. Integrate web_search and web_visit tools
 
91
  Equip the served model with web_search and web_visit tools to enable internet-aware functionality. Alternatively, use a middleware like MCP for tool integration—see this example repository: https://github.com/hoanganhpham1006/mcp-server-template.
92
 
93
  ## Host on macOS with MLX for local use
 
46
  ### Phase 4: Reinforcement Learning
47
 
48
  We trained the model using reinforcement learning
49
+ - Used dataset: [dgslibisey/MuSiQue](https://huggingface.co/datasets/dgslibisey/MuSiQue)
50
+ - Incorporated our in-house search database (containing Wiki data, Fineweb data, and ArXiv data)
51
 
52
  ## Performance
53
 
 
81
  ## Usage
82
  To deploy and interact with the II-Search-4B model effectively, follow these options:
83
  1. Serve the model using vLLM or SGLang
84
+
85
  Use the following command to serve the model with vLLM (adjust parameters as needed for your hardware setup):
86
  ```bash
87
  vllm serve Intelligent-Internet/II-Search-4B --served-model-name II-Search-4B --tensor-parallel-size 8 --enable-reasoning --reasoning-parser deepseek_r1 --rope-scaling '{"rope_type":"yarn","factor":1.5,"original_max_position_embeddings":98304}' --max-model-len 131072
 
89
  This configuration enables distributed tensor parallelism across 8 GPUs, reasoning capabilities, custom RoPE scaling for extended context, and a maximum context length of 131,072 tokens.
90
 
91
  2. Integrate web_search and web_visit tools
92
+
93
  Equip the served model with web_search and web_visit tools to enable internet-aware functionality. Alternatively, use a middleware like MCP for tool integration—see this example repository: https://github.com/hoanganhpham1006/mcp-server-template.
94
 
95
  ## Host on macOS with MLX for local use