| # 🦙🎧 LLaMA-Omni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis | |
| > **Authors: [Qingkai Fang](https://fangqingkai.github.io/), [Yan Zhou](https://zhouyan19.github.io/zhouyan/), [Shoutao Guo](https://scholar.google.com/citations?hl=en&user=XwHtPyAAAAAJ), [Shaolei Zhang](https://zhangshaolei1998.github.io/), [Yang Feng*](https://people.ucas.edu.cn/~yangfeng?language=en)** | |
| [](https://arxiv.org/abs/2505.02625) | |
| [](https://github.com/ictnlp/LLaMA-Omni2) | |
| [](https://huggingface.co/collections/ICTNLP/llama-omni-67fdfb852c60470175e36e9c) | |
| [](https://huggingface.co/datasets/ICTNLP/Multiturn-Speech-Conversations) | |
| LLaMA-Omni 2 is a series of speech-language models built on the Qwen2.5-0.5B/1.5B/3B/7B/14B/32B-Instruct models. Similar to [LLaMA-Omni](https://github.com/ictnlp/LLaMA-Omni), it can generate both text and speech responses simultaneously, enabling high-quality and low-latency speech interaction. With the newly introduced streaming autoregressive speech decoder, LLaMA-Omni 2 achieves higher speech quality compared to LLaMA-Omni. | |
| <div align="center"><img src="images/llama-omni2.png" width="75%"/></div> | |
| ## 🔥 News | |
| - [25/05] LLaMA-Omni 2 is accepted at ACL 2025 main conference! | |
| ## Install | |
| 1. Clone this repository. | |
| ```shell | |
| git clone https://github.com/ictnlp/LLaMA-Omni2 | |
| cd LLaMA-Omni2 | |
| ``` | |
| 2. Install packages. | |
| ```shell | |
| conda create -n llama-omni2 python=3.10 | |
| conda activate llama-omni2 | |
| pip install -e . | |
| ``` | |
| ## Quick Start | |
| 1. Download the `Whisper-large-v3` model. | |
| ```shell | |
| import whisper | |
| model = whisper.load_model("large-v3", download_root="models/speech_encoder/") | |
| ``` | |
| 2. Download the flow-matching model and vocoder of `CosyVoice 2`. | |
| ```shell | |
| huggingface-cli download --resume-download ICTNLP/cosy2_decoder --local-dir models/cosy2_decoder | |
| ``` | |
| > [!Tip] | |
| > If you’re experiencing unstable connections to Hugging Face from within China, you can try setting the following in your command line: | |
| > | |
| > ```shell | |
| > export HF_ENDPOINT=https://hf-mirror.com | |
| > ``` | |
| 3. Download the LLaMA-Omni2 series models from Hugging Face. `LLaMA-Omni2-0.5B/1.5B/3B/7B/14B` support **English only**, while `LLaMA-Omni2-0.5B/1.5B/3B/7B/14B/32B-Bilingual` support **both English and Chinese**. | |
| ```shell | |
| model_name=LLaMA-Omni2-7B-Bilingual | |
| huggingface-cli download --resume-download ICTNLP/$model_name --local-dir models/$model_name | |
| ``` | |
| | LLaMA-Omni2 | LLaMA-Omni2-Bilingual | | |
| | --------------------------------------------------------------------- | ----------------------------------------------------------------------------------------- | | |
| | 🤗 [LLaMA-Omni2-0.5B](https://huggingface.co/ICTNLP/LLaMA-Omni2-0.5B) | 🤗 [LLaMA-Omni2-0.5B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-0.5B-Bilingual) | | |
| | 🤗 [LLaMA-Omni2-1.5B](https://huggingface.co/ICTNLP/LLaMA-Omni2-1.5B) | 🤗 [LLaMA-Omni2-1.5B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-1.5B-Bilingual) | | |
| | 🤗 [LLaMA-Omni2-3B](https://huggingface.co/ICTNLP/LLaMA-Omni2-3B) | 🤗 [LLaMA-Omni2-3B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-3B-Bilingual) | | |
| | 🤗 [LLaMA-Omni2-7B](https://huggingface.co/ICTNLP/LLaMA-Omni2-7B) | 🤗 [LLaMA-Omni2-7B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-7B-Bilingual) | | |
| | 🤗 [LLaMA-Omni2-14B](https://huggingface.co/ICTNLP/LLaMA-Omni2-14B) | 🤗 [LLaMA-Omni2-14B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-14B-Bilingual) | | |
| | - | 🤗 [LLaMA-Omni2-32B-Bilingual](https://huggingface.co/ICTNLP/LLaMA-Omni2-32B-Bilingual) | | |
| ## Gradio Demo | |
| 1. Launch a controller. | |
| ```shell | |
| python -m llama_omni2.serve.controller --host 0.0.0.0 --port 10000 | |
| ``` | |
| 2. Launch a gradio web server. | |
| ```shell | |
| python -m llama_omni2.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --vocoder-dir models/cosy2_decoder | |
| ``` | |
| 3. Launch a model worker. | |
| ```shell | |
| python -m llama_omni2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path models/$model_name --model-name $model_name | |
| ``` | |
| 4. Visit [http://localhost:8000/](http://localhost:8000/) and interact with LLaMA-Omni2! | |
| ## Local Inference | |
| ```shell | |
| output_dir=examples/$model_name | |
| mkdir -p $output_dir | |
| python llama_omni2/inference/run_llama_omni2.py \ | |
| --model_path models/$model_name \ | |
| --question_file examples/questions.json \ | |
| --answer_file $output_dir/answers.jsonl \ | |
| --temperature 0 \ | |
| --s2s | |
| python llama_omni2/inference/run_cosy2_decoder.py \ | |
| --input-path $output_dir/answers.jsonl \ | |
| --output-dir $output_dir/wav \ | |
| --lang en | |
| ``` | |
| ## LICENSE | |
| Our code is released under the Apache-2.0 License. Our model is intended for academic research purposes only and may **NOT** be used for commercial purposes. | |
| You are free to use, modify, and distribute this model in academic settings, provided that the following conditions are met: | |
| - **Non-commercial use**: The model may not be used for any commercial purposes. | |
| - **Citation**: If you use this model in your research, please cite the original work. | |
| ### Commercial Use Restriction | |
| For any commercial use inquiries or to obtain a commercial license, please contact `[email protected]`. | |
| ## Acknowledgements | |
| - [CosyVoice 2](https://github.com/FunAudioLLM/CosyVoice): We use the pretrained speech tokenizer, flow-matching model and vocoder of CosyVoice 2. | |
| - [SLAM-LLM](https://github.com/X-LANCE/SLAM-LLM): We borrow some code about speech encoder and speech adaptor. | |
| ## Citation | |
| If you have any questions, please feel free to submit an issue or contact `[email protected]`. | |
| If our work is useful for you, please cite as: | |
| ``` | |
| @inproceedings{ | |
| fang2025llamaomni2, | |
| title={{LL}a{MA}-{O}mni 2: LLM-based Real-time Spoken Chatbot with Autoregressive Streaming Speech Synthesis}, | |
| author={Fang, Qingkai and Zhou, Yan and Guo, Shoutao and Zhang, Shaolei and Feng, Yang}, | |
| booktitle = {Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics}, | |
| year={2025} | |
| } | |
| @inproceedings{ | |
| fang2025llamaomni, | |
| title={{LL}a{MA}-{O}mni: Seamless Speech Interaction with Large Language Models}, | |
| author={Qingkai Fang and Shoutao Guo and Yan Zhou and Zhengrui Ma and Shaolei Zhang and Yang Feng}, | |
| booktitle={The Thirteenth International Conference on Learning Representations}, | |
| year={2025}, | |
| url={https://openreview.net/forum?id=PYmrUQmMEw} | |
| } | |
| ``` | |