|
--- |
|
library_name: transformers |
|
license: gemma |
|
base_model: google/gemma-3-270m-it |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Humenuik/train.jsonl |
|
model-index: |
|
- name: workspace/output/finetune-gemma3-270m-it |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.13.0.dev0` |
|
```yaml |
|
base_model: google/gemma-3-270m-it |
|
model_type: GemmaForCausalLM |
|
tokenizer_type: AutoTokenizer |
|
trust_remote_code: true |
|
|
|
datasets: |
|
- path: Humenuik/train.jsonl |
|
type: alpaca |
|
conversation: "alpaca" |
|
|
|
dataset_prepared_path: |
|
/workspace/output/prepared |
|
|
|
output_dir: /workspace/output/finetune-gemma3-270m-it |
|
|
|
lora_r: 32 # Set the LoRA rank, influencing the capacity of the adapter layers. |
|
lora_alpha: 16 # Adjust the LoRA alpha, a scaling factor for LoRA updates. |
|
lora_dropout: 0.05 # Apply a dropout rate to LoRA layers for regularization. |
|
lora_target_modules: |
|
- q_proj |
|
- v_proj |
|
- k_proj |
|
- o_proj |
|
- gate_proj |
|
- up_proj |
|
- down_proj # Specify the modules within the model where LoRA adapters will be applied (e.g., attention projections, MLP layers). |
|
|
|
gradient_checkpointing: false |
|
micro_batch_size: 8 # Define the size of each micro-batch processed by the GPU. |
|
num_epochs: 2 # Set the number of training epochs. |
|
learning_rate: 0.0002 # Specify the learning rate for the optimizer. |
|
lr_scheduler: cosine # Choose a learning rate scheduler (e.g., cosine). |
|
warmup_steps: 10 # Configure warmup steps for the learning rate scheduler. |
|
batch_size: 24 |
|
gradient_checkpointing: true # Enable gradient checkpointing to reduce memory consumption during training. |
|
``` |
|
|
|
</details><br> |
|
|
|
# workspace/output/finetune-gemma3-270m-it |
|
|
|
This model is a fine-tuned version of [google/gemma-3-270m-it](https://huggingface.co/google/gemma-3-270m-it) on the Humenuik/train.jsonl dataset. |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 10 |
|
- training_steps: 4528 |
|
|
|
### Training results |
|
|
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.55.2 |
|
- Pytorch 2.7.1+cu126 |
|
- Datasets 4.0.0 |
|
- Tokenizers 0.21.4 |
|
|