docling-layout / README.md
HuggingPanda's picture
Update README.md
7cfbdd3 verified
---
language:
- en
base_model:
- ds4sd/docling-models
pipeline_tag: object-detection
---
# Docling Model for Layout
This is the **Docling model for layout detection**, designed to facilitate easy importing and usage like any other Hugging Face model.
This model is part of the [Docling repository](https://huggingface.co/ds4sd/docling-models), which provides document layout analysis tools.
## **Usage Example**
Here's how you can load and use the model:
```python
import torch
from PIL import Image
from transformers import RTDetrForObjectDetection, RTDetrImageProcessor
# Load the model and processor
image_processor = RTDetrImageProcessor.from_pretrained("HuggingPanda/docling-layout")
model = RTDetrForObjectDetection.from_pretrained("HuggingPanda/docling-layout")
# Load an image
image = Image.open("hocr_output_page-0001.jpg")
# Preprocess the image
resize = {"height":640, "width":640}
inputs = image_processor(
images=image,
return_tensors="pt",
size=resize,
)
# Perform inference
with torch.no_grad():
outputs = model(**inputs)
# Post-process results
results = image_processor.post_process_object_detection(
outputs,
target_sizes=torch.tensor([image.size[::-1]]),
threshold=0.3
)
# Print detected objects
for result in results:
for score, label_id, box in zip(result["scores"], result["labels"], result["boxes"]):
score, label = score.item(), label_id.item()
box = [round(i, 2) for i in box.tolist()]
print(f"{model.config.id2label[label+1]}: {score:.2f} {box}")
```
## **Model Information**
- **Base Model:** RT-DETR (Robust Transformer-based Object Detector)
- **Intended Use:** Layout detection for documents
- **Framework:** [Hugging Face Transformers](https://huggingface.co/docs/transformers/index)
- **Dataset Used:** Internal dataset for document structure recognition
- **License:** Apache 2.0
## **Citing This Model**
If you use this model in your work, please cite the main **Docling repository**:
```
@misc{docling2024, title={Docling Models for Document Layout Analysis}, author={DS4SD Team}, year={2024}, howpublished={Hugging Face Repository}, url={https://huggingface.co/ds4sd/docling-models} }
```
For more details, visit the main repo: [ds4sd/docling-models](https://huggingface.co/ds4sd/docling-models).
## **Contact**
For questions or issues, please open a discussion on Hugging Face or contact [[email protected]].