Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,55 +1,46 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
- lora
|
6 |
-
- cli
|
7 |
-
- fine-tuning
|
8 |
-
- qna
|
9 |
-
- transformers
|
10 |
-
- peft
|
11 |
-
library_name: transformers
|
12 |
-
datasets:
|
13 |
-
- custom
|
14 |
-
language: en
|
15 |
-
model_type: causal-lm
|
16 |
---
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
|
|
|
|
|
|
21 |
|
22 |
---
|
23 |
|
24 |
-
##
|
25 |
|
26 |
-
-
|
27 |
-
- Fine-Tuning Method: [LoRA](https://arxiv.org/abs/2106.09685)
|
28 |
-
- Libraries Used: `transformers`, `peft`, `datasets`, `accelerate`
|
29 |
|
30 |
---
|
31 |
|
32 |
-
##
|
33 |
|
34 |
-
-
|
35 |
-
|
36 |
-
-
|
37 |
-
-
|
|
|
38 |
|
39 |
---
|
40 |
|
41 |
-
##
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
|
48 |
-
|
49 |
-
r=16,
|
50 |
-
lora_alpha=32,
|
51 |
-
lora_dropout=0.1,
|
52 |
-
bias="none",
|
53 |
-
task_type="CAUSAL_LM"
|
54 |
-
)
|
55 |
|
|
|
|
|
|
|
|
1 |
+
# CLI-LoRA-TinyLLaMA
|
2 |
+
|
3 |
+
Fine-tuned **TinyLLaMA-1.1B** model using **QLoRA** on a custom CLI Q&A dataset (Git, Bash, tar/gzip, grep, venv) for the Fenrir Security Internship Task.
|
4 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
---
|
6 |
|
7 |
+
## 🔧 Project Overview
|
8 |
|
9 |
+
- **Base model**: [TinyLLaMA/TinyLLaMA-1.1B-Chat-v1.0](https://huggingface.co/TinyLLaMA/TinyLLaMA-1.1B-Chat-v1.0)
|
10 |
+
- **Fine-tuning method**: QLoRA
|
11 |
+
- **Library**: `transformers`, `peft`, `trl`, `datasets`
|
12 |
+
- **Training file**: [`training.ipynb`](./training.ipynb)
|
13 |
|
14 |
---
|
15 |
|
16 |
+
## 🧠 Objective
|
17 |
|
18 |
+
To fine-tune a small language model on real-world command-line Q&A data (no LLM-generated text) and build a command-line chatbot agent capable of providing accurate CLI support.
|
|
|
|
|
19 |
|
20 |
---
|
21 |
|
22 |
+
## 📂 Files Included
|
23 |
|
24 |
+
- `training.ipynb`: Full training notebook (cleaned, token-free)
|
25 |
+
- `adapter_config.json`: LoRA adapter configuration
|
26 |
+
- `adapter_model.safetensors`: Trained adapter weights
|
27 |
+
- `eval_logs.json`: Sample evaluation results (accuracy, loss, etc.)
|
28 |
+
- `README.md`: This file
|
29 |
|
30 |
---
|
31 |
|
32 |
+
## 📊 Results
|
33 |
|
34 |
+
| Metric | Value |
|
35 |
+
|--------------|---------------|
|
36 |
+
| Training Loss| *<your value>* |
|
37 |
+
| Eval Accuracy| *<your value>* |
|
38 |
+
| Epochs | *<your value>* |
|
39 |
|
40 |
+
---
|
41 |
|
42 |
+
## 📎 Sample Q&A
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
```bash
|
45 |
+
Q: How to stash changes in Git?
|
46 |
+
A: Use `git stash` to save your changes temporarily. Retrieve later using `git stash pop`.
|