Harish2002 commited on
Commit
4f80e7c
·
verified ·
1 Parent(s): f6bc9c0

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +28 -37
README.md CHANGED
@@ -1,55 +1,46 @@
1
- ---
2
- license: mit
3
- tags:
4
- - tinyllama
5
- - lora
6
- - cli
7
- - fine-tuning
8
- - qna
9
- - transformers
10
- - peft
11
- library_name: transformers
12
- datasets:
13
- - custom
14
- language: en
15
- model_type: causal-lm
16
  ---
17
 
18
- # 🔧 CLI LoRA-TinyLlama
19
 
20
- A fine-tuned version of [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) on a custom dataset of command-line Q&A, using **LoRA** (Low-Rank Adaptation). Built for fast, accurate help on common CLI topics.
 
 
 
21
 
22
  ---
23
 
24
- ## 🧩 Base Model
25
 
26
- - Model: `TinyLlama/TinyLlama-1.1B-Chat-v1.0`
27
- - Fine-Tuning Method: [LoRA](https://arxiv.org/abs/2106.09685)
28
- - Libraries Used: `transformers`, `peft`, `datasets`, `accelerate`
29
 
30
  ---
31
 
32
- ## 📚 Dataset
33
 
34
- - Custom dataset with **150+ Q&A pairs** covering:
35
- - `git`, `bash`, `grep`, `tar`, `venv`
36
- - Raw file: `cli_questions.json`
37
- - Tokenized version: `tokenized_dataset/`
 
38
 
39
  ---
40
 
41
- ## 🛠️ Training Configuration
42
 
43
- ```python
44
- from peft import LoraConfig
 
 
 
45
 
46
- base_model = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
47
 
48
- lora_config = LoraConfig(
49
- r=16,
50
- lora_alpha=32,
51
- lora_dropout=0.1,
52
- bias="none",
53
- task_type="CAUSAL_LM"
54
- )
55
 
 
 
 
 
1
+ # CLI-LoRA-TinyLLaMA
2
+
3
+ Fine-tuned **TinyLLaMA-1.1B** model using **QLoRA** on a custom CLI Q&A dataset (Git, Bash, tar/gzip, grep, venv) for the Fenrir Security Internship Task.
4
+
 
 
 
 
 
 
 
 
 
 
 
5
  ---
6
 
7
+ ## 🔧 Project Overview
8
 
9
+ - **Base model**: [TinyLLaMA/TinyLLaMA-1.1B-Chat-v1.0](https://huggingface.co/TinyLLaMA/TinyLLaMA-1.1B-Chat-v1.0)
10
+ - **Fine-tuning method**: QLoRA
11
+ - **Library**: `transformers`, `peft`, `trl`, `datasets`
12
+ - **Training file**: [`training.ipynb`](./training.ipynb)
13
 
14
  ---
15
 
16
+ ## 🧠 Objective
17
 
18
+ To fine-tune a small language model on real-world command-line Q&A data (no LLM-generated text) and build a command-line chatbot agent capable of providing accurate CLI support.
 
 
19
 
20
  ---
21
 
22
+ ## 📂 Files Included
23
 
24
+ - `training.ipynb`: Full training notebook (cleaned, token-free)
25
+ - `adapter_config.json`: LoRA adapter configuration
26
+ - `adapter_model.safetensors`: Trained adapter weights
27
+ - `eval_logs.json`: Sample evaluation results (accuracy, loss, etc.)
28
+ - `README.md`: This file
29
 
30
  ---
31
 
32
+ ## 📊 Results
33
 
34
+ | Metric | Value |
35
+ |--------------|---------------|
36
+ | Training Loss| *<your value>* |
37
+ | Eval Accuracy| *<your value>* |
38
+ | Epochs | *<your value>* |
39
 
40
+ ---
41
 
42
+ ## 📎 Sample Q&A
 
 
 
 
 
 
43
 
44
+ ```bash
45
+ Q: How to stash changes in Git?
46
+ A: Use `git stash` to save your changes temporarily. Retrieve later using `git stash pop`.