Upload training.ipynb with huggingface_hub
Browse files- training.ipynb +605 -0
training.ipynb
ADDED
@@ -0,0 +1,605 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"id": "7ef3e090-1986-4080-827e-fdef2deda5ba",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import json\n",
|
11 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline\n",
|
12 |
+
"import torch\n"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"cell_type": "code",
|
17 |
+
"execution_count": null,
|
18 |
+
"id": "ee142e5a-92ac-400b-a048-89a3df0060f6",
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
23 |
+
"print(f\"Device set to: {device}\")\n"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "code",
|
28 |
+
"execution_count": null,
|
29 |
+
"id": "ba2eea5c-108e-4305-a64e-c35800cf9bf2",
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"# Load CLI Q&A dataset\n",
|
34 |
+
"with open(\"cli_questions.json\", \"r\", encoding=\"utf-8\") as f:\n",
|
35 |
+
" data = json.load(f)\n",
|
36 |
+
"\n",
|
37 |
+
"# Access the list of entries inside \"data\" key\n",
|
38 |
+
"qa_list = data[\"data\"]\n",
|
39 |
+
"\n",
|
40 |
+
"# Show a sample\n",
|
41 |
+
"print(f\"Total entries: {len(qa_list)}\")\n",
|
42 |
+
"print(\"Sample entry:\", qa_list[0])\n"
|
43 |
+
]
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"cell_type": "code",
|
47 |
+
"execution_count": null,
|
48 |
+
"id": "81490ae9-b6f9-4004-b098-c09677c1dcd3",
|
49 |
+
"metadata": {},
|
50 |
+
"outputs": [],
|
51 |
+
"source": [
|
52 |
+
"model_id = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\"\n",
|
53 |
+
"\n",
|
54 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
55 |
+
"model = AutoModelForCausalLM.from_pretrained(model_id)\n",
|
56 |
+
"model.to(device)\n"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": null,
|
62 |
+
"id": "5eb00a02-a5a5-4746-bc1f-685ce4865600",
|
63 |
+
"metadata": {},
|
64 |
+
"outputs": [],
|
65 |
+
"source": [
|
66 |
+
"generator = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, device=-1) # -1 for CPU\n"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": null,
|
72 |
+
"id": "0f2b0688-a24d-4d86-90e5-9b8237620f6c",
|
73 |
+
"metadata": {},
|
74 |
+
"outputs": [],
|
75 |
+
"source": [
|
76 |
+
"# Pick sample questions\n",
|
77 |
+
"sample_questions = [entry[\"question\"] for entry in qa_list[:5]]\n",
|
78 |
+
"\n",
|
79 |
+
"# Generate and print answers\n",
|
80 |
+
"for i, question in enumerate(sample_questions):\n",
|
81 |
+
" print(f\"Q{i+1}: {question}\")\n",
|
82 |
+
" output = generator(question, max_new_tokens=150, do_sample=True, temperature=0.7)\n",
|
83 |
+
" print(f\"A{i+1}: {output[0]['generated_text']}\\n{'-'*60}\")\n"
|
84 |
+
]
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"cell_type": "code",
|
88 |
+
"execution_count": null,
|
89 |
+
"id": "0f52ebb0-e2b9-4971-b66c-5353257b7a1c",
|
90 |
+
"metadata": {},
|
91 |
+
"outputs": [],
|
92 |
+
"source": [
|
93 |
+
"prompt = f\"Q: {question}\\nA:\"\n",
|
94 |
+
"output = generator(prompt, max_new_tokens=100, do_sample=True, temperature=0.7)\n",
|
95 |
+
"print(output[0][\"generated_text\"])\n"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": null,
|
101 |
+
"id": "49fcf984-bd0d-48b7-857a-e6a6e04585b8",
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [],
|
104 |
+
"source": [
|
105 |
+
"import json\n",
|
106 |
+
"\n",
|
107 |
+
"# Load the dataset\n",
|
108 |
+
"with open(\"cli_questions.json\", \"r\") as f:\n",
|
109 |
+
" raw = json.load(f)\n",
|
110 |
+
" data = raw[\"data\"] # ensure this matches your JSON structure\n",
|
111 |
+
"\n",
|
112 |
+
"# Generate answers\n",
|
113 |
+
"results = []\n",
|
114 |
+
"for i, item in enumerate(data[:50]): # run on subset first\n",
|
115 |
+
" question = item[\"question\"]\n",
|
116 |
+
" prompt = f\"Q: {question}\\nA:\"\n",
|
117 |
+
" output = generator(prompt, max_new_tokens=150, temperature=0.7, do_sample=True)\n",
|
118 |
+
" answer = output[0][\"generated_text\"].split(\"A:\")[1].strip() if \"A:\" in output[0][\"generated_text\"] else output[0][\"generated_text\"]\n",
|
119 |
+
" results.append({\"question\": question, \"answer\": answer})\n",
|
120 |
+
" print(f\"Q{i+1}: {question}\\nA{i+1}: {answer}\\n{'-'*60}\")\n"
|
121 |
+
]
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"cell_type": "code",
|
125 |
+
"execution_count": null,
|
126 |
+
"id": "819b988d-c6a1-4b11-b09d-1f1892e18158",
|
127 |
+
"metadata": {},
|
128 |
+
"outputs": [],
|
129 |
+
"source": [
|
130 |
+
"!pip install transformers datasets peft accelerate bitsandbytes trl --quiet\n"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"cell_type": "code",
|
135 |
+
"execution_count": null,
|
136 |
+
"id": "6b3c1312-3499-4462-b435-9fe72f0d6f06",
|
137 |
+
"metadata": {
|
138 |
+
"scrolled": true
|
139 |
+
},
|
140 |
+
"outputs": [],
|
141 |
+
"source": [
|
142 |
+
"print(\"Top-level keys:\", data.keys() if isinstance(data, dict) else \"Not a dict\")\n",
|
143 |
+
"print(\"Preview:\", str(data)[:500]) # Print first 500 chars of the content\n"
|
144 |
+
]
|
145 |
+
},
|
146 |
+
{
|
147 |
+
"cell_type": "code",
|
148 |
+
"execution_count": null,
|
149 |
+
"id": "96748b74-a5c7-439e-8428-680cba84e06d",
|
150 |
+
"metadata": {},
|
151 |
+
"outputs": [],
|
152 |
+
"source": [
|
153 |
+
"import json\n",
|
154 |
+
"from datasets import Dataset\n",
|
155 |
+
"\n",
|
156 |
+
"# Load and extract Q&A list\n",
|
157 |
+
"with open(\"cli_questions.json\", \"r\") as f:\n",
|
158 |
+
" raw = json.load(f)\n",
|
159 |
+
" data_list = raw[\"data\"] # ✅ correct key now\n",
|
160 |
+
"\n",
|
161 |
+
"# Convert to prompt/response format\n",
|
162 |
+
"for sample in data_list:\n",
|
163 |
+
" sample[\"prompt\"] = sample[\"question\"]\n",
|
164 |
+
" sample[\"response\"] = sample[\"answer\"]\n",
|
165 |
+
"\n",
|
166 |
+
"# Create HuggingFace Dataset\n",
|
167 |
+
"dataset = Dataset.from_list(data_list)\n",
|
168 |
+
"dataset = dataset.train_test_split(test_size=0.1)\n",
|
169 |
+
"\n",
|
170 |
+
"print(\"Loaded dataset:\", dataset)\n"
|
171 |
+
]
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"cell_type": "code",
|
175 |
+
"execution_count": null,
|
176 |
+
"id": "7a7560e5-b04f-480c-b989-0bb3d3611701",
|
177 |
+
"metadata": {},
|
178 |
+
"outputs": [],
|
179 |
+
"source": [
|
180 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
181 |
+
"\n",
|
182 |
+
"model_name = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\" # or try \"microsoft/phi-2\"\n",
|
183 |
+
"\n",
|
184 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
185 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
186 |
+
" model_name,\n",
|
187 |
+
" device_map=\"auto\",\n",
|
188 |
+
" load_in_4bit=True # For LoRA on low-resource\n",
|
189 |
+
")\n"
|
190 |
+
]
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"cell_type": "code",
|
194 |
+
"execution_count": null,
|
195 |
+
"id": "ae23057e-b741-4541-946d-77f9c5b8c9dc",
|
196 |
+
"metadata": {},
|
197 |
+
"outputs": [],
|
198 |
+
"source": [
|
199 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
200 |
+
"\n",
|
201 |
+
"model_name = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\"\n",
|
202 |
+
"\n",
|
203 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
204 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
205 |
+
" model_name,\n",
|
206 |
+
" torch_dtype=\"auto\", # or torch.float32 if you get another dtype error\n",
|
207 |
+
" device_map=\"cpu\" # force CPU since no supported GPU found\n",
|
208 |
+
")\n"
|
209 |
+
]
|
210 |
+
},
|
211 |
+
{
|
212 |
+
"cell_type": "code",
|
213 |
+
"execution_count": null,
|
214 |
+
"id": "ac99fe95-b5f3-4591-bc7c-793e195eeb86",
|
215 |
+
"metadata": {},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig\n",
|
219 |
+
"\n",
|
220 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
221 |
+
" load_in_4bit=True,\n",
|
222 |
+
" bnb_4bit_use_double_quant=True,\n",
|
223 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
224 |
+
" bnb_4bit_compute_dtype=torch.float16,\n",
|
225 |
+
")\n",
|
226 |
+
"\n",
|
227 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
228 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
229 |
+
" model_name,\n",
|
230 |
+
" device_map=\"auto\",\n",
|
231 |
+
" quantization_config=bnb_config\n",
|
232 |
+
")\n"
|
233 |
+
]
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"cell_type": "code",
|
237 |
+
"execution_count": null,
|
238 |
+
"id": "7bde0e33-3bed-4940-907f-e0c2e7af1cd3",
|
239 |
+
"metadata": {},
|
240 |
+
"outputs": [],
|
241 |
+
"source": [
|
242 |
+
"import torch\n",
|
243 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig\n",
|
244 |
+
"\n",
|
245 |
+
"model_name = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\"\n",
|
246 |
+
"\n",
|
247 |
+
"bnb_config = BitsAndBytesConfig(\n",
|
248 |
+
" load_in_4bit=True,\n",
|
249 |
+
" bnb_4bit_use_double_quant=True,\n",
|
250 |
+
" bnb_4bit_quant_type=\"nf4\",\n",
|
251 |
+
" bnb_4bit_compute_dtype=torch.float16,\n",
|
252 |
+
")\n",
|
253 |
+
"\n",
|
254 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
255 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
256 |
+
" model_name,\n",
|
257 |
+
" device_map=\"auto\",\n",
|
258 |
+
" quantization_config=bnb_config\n",
|
259 |
+
")\n"
|
260 |
+
]
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"cell_type": "code",
|
264 |
+
"execution_count": null,
|
265 |
+
"id": "51e0d14a-18c7-410f-9821-0eb00d3d1bbc",
|
266 |
+
"metadata": {},
|
267 |
+
"outputs": [],
|
268 |
+
"source": [
|
269 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM\n",
|
270 |
+
"\n",
|
271 |
+
"model_name = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\"\n",
|
272 |
+
"\n",
|
273 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
274 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
275 |
+
" model_name,\n",
|
276 |
+
" device_map=\"auto\", # This will still use CPU if no GPU is found\n",
|
277 |
+
")\n"
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"execution_count": null,
|
283 |
+
"id": "f4e4786e-e67c-4c0f-b169-6996a2966558",
|
284 |
+
"metadata": {},
|
285 |
+
"outputs": [],
|
286 |
+
"source": [
|
287 |
+
"model = AutoModelForCausalLM.from_pretrained(\n",
|
288 |
+
" model_name,\n",
|
289 |
+
" device_map=\"auto\",\n",
|
290 |
+
" torch_dtype=torch.float32 # or float16 if your CPU supports it\n",
|
291 |
+
")\n"
|
292 |
+
]
|
293 |
+
},
|
294 |
+
{
|
295 |
+
"cell_type": "code",
|
296 |
+
"execution_count": null,
|
297 |
+
"id": "dfd328ef-9362-426b-894e-923e70c7ace3",
|
298 |
+
"metadata": {},
|
299 |
+
"outputs": [],
|
300 |
+
"source": [
|
301 |
+
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
|
302 |
+
"print(f\"Device set to: {device}\")\n"
|
303 |
+
]
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"cell_type": "code",
|
307 |
+
"execution_count": null,
|
308 |
+
"id": "6743ec8e-8bd9-4a73-8786-fd71a6790d78",
|
309 |
+
"metadata": {},
|
310 |
+
"outputs": [],
|
311 |
+
"source": [
|
312 |
+
"import json\n",
|
313 |
+
"import torch\n",
|
314 |
+
"from datasets import Dataset\n",
|
315 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling\n",
|
316 |
+
"from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training"
|
317 |
+
]
|
318 |
+
},
|
319 |
+
{
|
320 |
+
"cell_type": "code",
|
321 |
+
"execution_count": null,
|
322 |
+
"id": "4252cc0c-62fe-4871-8095-ab07959b7884",
|
323 |
+
"metadata": {},
|
324 |
+
"outputs": [],
|
325 |
+
"source": [
|
326 |
+
"import json\n",
|
327 |
+
"import torch\n",
|
328 |
+
"from datasets import Dataset\n",
|
329 |
+
"from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer, DataCollatorForLanguageModeling\n",
|
330 |
+
"from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training"
|
331 |
+
]
|
332 |
+
},
|
333 |
+
{
|
334 |
+
"cell_type": "code",
|
335 |
+
"execution_count": null,
|
336 |
+
"id": "7153b443-8059-42d1-96fa-699d0f19f9cf",
|
337 |
+
"metadata": {},
|
338 |
+
"outputs": [],
|
339 |
+
"source": [
|
340 |
+
"import json\n",
|
341 |
+
"\n",
|
342 |
+
"with open(\"cli_questions.json\") as f:\n",
|
343 |
+
" data = json.load(f)\n",
|
344 |
+
"\n",
|
345 |
+
"# Check the top-level structure\n",
|
346 |
+
"print(type(data)) # Should print <class 'dict'>\n",
|
347 |
+
"print(data.keys()) # See what keys are at the top\n"
|
348 |
+
]
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"cell_type": "code",
|
352 |
+
"execution_count": null,
|
353 |
+
"id": "fbfa8025-233e-47c5-9044-146f95bb24eb",
|
354 |
+
"metadata": {},
|
355 |
+
"outputs": [],
|
356 |
+
"source": [
|
357 |
+
"import json\n",
|
358 |
+
"from datasets import Dataset\n",
|
359 |
+
"\n",
|
360 |
+
"# Load the JSON and extract the list\n",
|
361 |
+
"with open(\"cli_questions.json\") as f:\n",
|
362 |
+
" raw = json.load(f)\n",
|
363 |
+
"\n",
|
364 |
+
"qa_list = raw[\"data\"] # access the list inside the 'data' key\n",
|
365 |
+
"\n",
|
366 |
+
"# Format for instruction tuning\n",
|
367 |
+
"formatted_data = [\n",
|
368 |
+
" {\"text\": f\"### Question:\\n{item['question']}\\n\\n### Answer:\\n{item['answer']}\"}\n",
|
369 |
+
" for item in qa_list\n",
|
370 |
+
"]\n",
|
371 |
+
"\n",
|
372 |
+
"# Convert to Hugging Face dataset\n",
|
373 |
+
"dataset = Dataset.from_list(formatted_data)\n",
|
374 |
+
"\n",
|
375 |
+
"# Preview\n",
|
376 |
+
"print(f\"Loaded {len(dataset)} formatted examples\")\n",
|
377 |
+
"print(dataset[0])\n"
|
378 |
+
]
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"cell_type": "code",
|
382 |
+
"execution_count": null,
|
383 |
+
"id": "893c412e-0f09-44fd-b6f8-fe3557a071aa",
|
384 |
+
"metadata": {},
|
385 |
+
"outputs": [],
|
386 |
+
"source": [
|
387 |
+
"from transformers import AutoTokenizer\n",
|
388 |
+
"\n",
|
389 |
+
"model_id = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\" # You can switch to Phi-2 if you prefer\n",
|
390 |
+
"\n",
|
391 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_id)\n",
|
392 |
+
"tokenizer.pad_token = tokenizer.eos_token # Needed for causal LM padding\n",
|
393 |
+
"\n",
|
394 |
+
"# Tokenization function\n",
|
395 |
+
"def tokenize(example):\n",
|
396 |
+
" return tokenizer(example[\"text\"], padding=\"max_length\", truncation=True, max_length=512)\n",
|
397 |
+
"\n",
|
398 |
+
"tokenized_dataset = dataset.map(tokenize, batched=True)\n",
|
399 |
+
"tokenized_dataset = tokenized_dataset.remove_columns([\"text\"])\n",
|
400 |
+
"\n",
|
401 |
+
"tokenized_dataset.set_format(type=\"torch\")\n",
|
402 |
+
"print(tokenized_dataset[0])\n"
|
403 |
+
]
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"cell_type": "code",
|
407 |
+
"execution_count": null,
|
408 |
+
"id": "fb49d005-c57c-422f-8bc5-b4037a6bb40f",
|
409 |
+
"metadata": {},
|
410 |
+
"outputs": [],
|
411 |
+
"source": [
|
412 |
+
"train_dataset = tokenized_dataset\n"
|
413 |
+
]
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"cell_type": "code",
|
417 |
+
"execution_count": null,
|
418 |
+
"id": "a3fb419b-703f-43c8-9be0-a71815b3da82",
|
419 |
+
"metadata": {},
|
420 |
+
"outputs": [],
|
421 |
+
"source": [
|
422 |
+
"# Use entire dataset as training set\n",
|
423 |
+
"train_dataset = tokenized_dataset\n"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"cell_type": "code",
|
428 |
+
"execution_count": null,
|
429 |
+
"id": "09c26c73-e7e8-4610-97d6-6c4a10004785",
|
430 |
+
"metadata": {},
|
431 |
+
"outputs": [],
|
432 |
+
"source": [
|
433 |
+
"tokenized_dataset.save_to_disk(\"tokenized_dataset\")\n"
|
434 |
+
]
|
435 |
+
},
|
436 |
+
{
|
437 |
+
"cell_type": "code",
|
438 |
+
"execution_count": null,
|
439 |
+
"id": "e66f130b-b80b-42fd-9f79-60f245f2c114",
|
440 |
+
"metadata": {},
|
441 |
+
"outputs": [],
|
442 |
+
"source": [
|
443 |
+
"from datasets import load_from_disk\n",
|
444 |
+
"\n",
|
445 |
+
"# Load the saved dataset\n",
|
446 |
+
"tokenized_dataset = load_from_disk(\"tokenized_dataset\")\n"
|
447 |
+
]
|
448 |
+
},
|
449 |
+
{
|
450 |
+
"cell_type": "code",
|
451 |
+
"execution_count": null,
|
452 |
+
"id": "2dbe3f16-4d82-40c8-be84-b1f85910620f",
|
453 |
+
"metadata": {},
|
454 |
+
"outputs": [],
|
455 |
+
"source": [
|
456 |
+
"train_dataset = tokenized_dataset # Use full set for training since it's only 172 examples\n"
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"cell_type": "code",
|
461 |
+
"execution_count": null,
|
462 |
+
"id": "7f05e8d5-fcdf-4a11-9c51-7e8ecd255848",
|
463 |
+
"metadata": {},
|
464 |
+
"outputs": [],
|
465 |
+
"source": [
|
466 |
+
"from transformers import DataCollatorForLanguageModeling\n",
|
467 |
+
"\n",
|
468 |
+
"data_collator = DataCollatorForLanguageModeling(\n",
|
469 |
+
" tokenizer=tokenizer,\n",
|
470 |
+
" mlm=False\n",
|
471 |
+
")\n"
|
472 |
+
]
|
473 |
+
},
|
474 |
+
{
|
475 |
+
"cell_type": "code",
|
476 |
+
"execution_count": null,
|
477 |
+
"id": "ec68cba4-8413-4c7d-91de-1fe798dc39fc",
|
478 |
+
"metadata": {},
|
479 |
+
"outputs": [],
|
480 |
+
"source": [
|
481 |
+
"from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer, DataCollatorForLanguageModeling\n",
|
482 |
+
"from peft import get_peft_model, LoraConfig, prepare_model_for_kbit_training\n",
|
483 |
+
"from datasets import load_from_disk\n",
|
484 |
+
"import torch\n",
|
485 |
+
"\n",
|
486 |
+
"# Load model and tokenizer (TinyLlama)\n",
|
487 |
+
"model_name = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\"\n",
|
488 |
+
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
|
489 |
+
"tokenizer.pad_token = tokenizer.eos_token # Important for Trainer padding\n",
|
490 |
+
"\n",
|
491 |
+
"model = AutoModelForCausalLM.from_pretrained(model_name)\n",
|
492 |
+
"\n",
|
493 |
+
"# Setup LoRA config\n",
|
494 |
+
"lora_config = LoraConfig(\n",
|
495 |
+
" r=8,\n",
|
496 |
+
" lora_alpha=16,\n",
|
497 |
+
" target_modules=[\"q_proj\", \"v_proj\"],\n",
|
498 |
+
" lora_dropout=0.1,\n",
|
499 |
+
" bias=\"none\",\n",
|
500 |
+
" task_type=\"CAUSAL_LM\"\n",
|
501 |
+
")\n",
|
502 |
+
"\n",
|
503 |
+
"# Inject LoRA adapters\n",
|
504 |
+
"model = get_peft_model(model, lora_config)\n",
|
505 |
+
"\n",
|
506 |
+
"# Load the tokenized dataset\n",
|
507 |
+
"dataset = load_from_disk(\"tokenized_dataset\")\n",
|
508 |
+
"\n",
|
509 |
+
"# Setup data collator\n",
|
510 |
+
"data_collator = DataCollatorForLanguageModeling(\n",
|
511 |
+
" tokenizer=tokenizer,\n",
|
512 |
+
" mlm=False\n",
|
513 |
+
")\n",
|
514 |
+
"\n",
|
515 |
+
"# Training args\n",
|
516 |
+
"training_args = TrainingArguments(\n",
|
517 |
+
" output_dir=\"./lora-tinyllama-output\",\n",
|
518 |
+
" per_device_train_batch_size=2, # Small batch size for CPU\n",
|
519 |
+
" gradient_accumulation_steps=4,\n",
|
520 |
+
" num_train_epochs=1, # Reduce for quicker runs\n",
|
521 |
+
" logging_steps=10,\n",
|
522 |
+
" save_strategy=\"epoch\",\n",
|
523 |
+
" learning_rate=2e-4,\n",
|
524 |
+
" fp16=False, # Don't use fp16 on CPU\n",
|
525 |
+
" report_to=\"none\"\n",
|
526 |
+
")\n",
|
527 |
+
"\n",
|
528 |
+
"# Define Trainer\n",
|
529 |
+
"trainer = Trainer(\n",
|
530 |
+
" model=model,\n",
|
531 |
+
" args=training_args,\n",
|
532 |
+
" train_dataset=dataset,\n",
|
533 |
+
" tokenizer=tokenizer,\n",
|
534 |
+
" data_collator=data_collator\n",
|
535 |
+
")\n",
|
536 |
+
"\n",
|
537 |
+
"# Start training\n",
|
538 |
+
"trainer.train()\n"
|
539 |
+
]
|
540 |
+
},
|
541 |
+
{
|
542 |
+
"cell_type": "code",
|
543 |
+
"execution_count": null,
|
544 |
+
"id": "2eaf9fa5-540c-4bd2-b6e1-9ea60c820004",
|
545 |
+
"metadata": {},
|
546 |
+
"outputs": [],
|
547 |
+
"source": [
|
548 |
+
"pip install -r requirements.txt\n"
|
549 |
+
]
|
550 |
+
},
|
551 |
+
{
|
552 |
+
"cell_type": "code",
|
553 |
+
"execution_count": null,
|
554 |
+
"id": "fad00764-e047-4fd0-b703-c9bbd343ce46",
|
555 |
+
"metadata": {},
|
556 |
+
"outputs": [],
|
557 |
+
"source": [
|
558 |
+
"login(token=\"REMOVED_TOKEN_...\")\n"
|
559 |
+
]
|
560 |
+
},
|
561 |
+
{
|
562 |
+
"cell_type": "code",
|
563 |
+
"execution_count": null,
|
564 |
+
"id": "075e175f-d164-420a-92fb-75150637d351",
|
565 |
+
"metadata": {},
|
566 |
+
"outputs": [],
|
567 |
+
"source": [
|
568 |
+
"from huggingface_hub import login\n",
|
569 |
+
"import os\n",
|
570 |
+
"\n",
|
571 |
+
"# Safer login using environment variable (no token exposed in notebook)\n",
|
572 |
+
"login(token=os.getenv(\"HF_TOKEN\"))\n"
|
573 |
+
]
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"cell_type": "code",
|
577 |
+
"execution_count": null,
|
578 |
+
"id": "def2deab-147c-4445-8e62-96c397d72f12",
|
579 |
+
"metadata": {},
|
580 |
+
"outputs": [],
|
581 |
+
"source": []
|
582 |
+
}
|
583 |
+
],
|
584 |
+
"metadata": {
|
585 |
+
"kernelspec": {
|
586 |
+
"display_name": "Python 3 (ipykernel)",
|
587 |
+
"language": "python",
|
588 |
+
"name": "python3"
|
589 |
+
},
|
590 |
+
"language_info": {
|
591 |
+
"codemirror_mode": {
|
592 |
+
"name": "ipython",
|
593 |
+
"version": 3
|
594 |
+
},
|
595 |
+
"file_extension": ".py",
|
596 |
+
"mimetype": "text/x-python",
|
597 |
+
"name": "python",
|
598 |
+
"nbconvert_exporter": "python",
|
599 |
+
"pygments_lexer": "ipython3",
|
600 |
+
"version": "3.12.7"
|
601 |
+
}
|
602 |
+
},
|
603 |
+
"nbformat": 4,
|
604 |
+
"nbformat_minor": 5
|
605 |
+
}
|