|  | --- | 
					
						
						|  | library_name: transformers | 
					
						
						|  | tags: | 
					
						
						|  | - time series | 
					
						
						|  | - embedding | 
					
						
						|  | license: mit | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # MOMENT-1-large-embedding-v0.1 | 
					
						
						|  |  | 
					
						
						|  | <!-- Provide a quick summary of what the model is/does. --> | 
					
						
						|  | This is an embedding model derived from [AutonLab/MOMENT-1-large](https://huggingface.co/AutonLab/MOMENT-1-large) | 
					
						
						|  |  | 
					
						
						|  | ## How to use | 
					
						
						|  | ```Python | 
					
						
						|  | from transformers import AutoConfig, AutoModel, AutoFeatureExtractor | 
					
						
						|  |  | 
					
						
						|  | model_name = "HachiML/MOMENT-1-large-embedding-v0.1" | 
					
						
						|  |  | 
					
						
						|  | model = AutoModel.from_pretrained(model_name, trust_remote_code=True) | 
					
						
						|  | feature_extractor = AutoFeatureExtractor.from_pretrained(model_name, trust_remote_code=True) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```Python | 
					
						
						|  | import torch | 
					
						
						|  |  | 
					
						
						|  | device = "cuda" if torch.cuda.is_available() else "cpu" | 
					
						
						|  | print(device) | 
					
						
						|  |  | 
					
						
						|  | model.to(device) | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```Python | 
					
						
						|  | hist_ndaq = pd.DataFrame("nasdaq_price_history.csv") | 
					
						
						|  | input_data = hist_ndaq[["Open", "High", "Low", "Close", "Volume"]].iloc[:512] | 
					
						
						|  |  | 
					
						
						|  | inputs = feature_extractor(input_data, return_tensors="pt") | 
					
						
						|  | # inputs = feature_extractor([input_data, input_data_2], return_tensors="pt")  # You can also pass multiple data in a list. | 
					
						
						|  |  | 
					
						
						|  | inputs = inputs.to(device) | 
					
						
						|  | outputs = model(**inputs) | 
					
						
						|  | print(outputs.embeddings) | 
					
						
						|  | ``` |