File size: 4,837 Bytes
874b09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fa63d0
874b09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
feadc03
874b09f
 
 
 
 
 
 
 
 
 
 
cde8a23
 
 
 
874b09f
 
 
 
 
 
 
 
feadc03
874b09f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: mit
---

<h1 align="center">KaLM-Embedding-V2</h1>


**KaLM-Embedding-V2** is a versatile and compact embedding model, which achieves impressive performance in general-purpose text embedding tasks by leveraging superior training techniques and data.

KaLM-embedding-multilingual-mini-instruct-v2 is trained from [Qwen/Qwen2-0.5B](https://huggingface.co/Qwen/Qwen2-0.5B) with massive weakly-supervised pre-training and high-quality supervised fine-tuning data.

The model incorporates several innovative designs:
- Architectural Design: integration of bidirectional attention, enhancing representation learning.
- Training Recipe: multi-stage training strategy, progressively improving the generalization and performance.
- Training Objective: focal-style reweighting mechanism and online hard-negative mixing strategy to improve the efficiency and continuity of embedding training.
- Training Data: 20 categories of data for pre-training and 100 categories of data for fine-tuning, as well as comprehensive recipes for curating training datasets.

## Model Information
- Model Size: 0.5B
- Embedding Dimension: 896
- Max Input Tokens: 32k
- MRL: 896 512 256 128 64

## 📑 Open-source Plan

- [x] Model Checkpoint 
    - [x] [KaLM-embedding-multilingual-mini-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-v1)
    - [x] [KaLM-embedding-multilingual-mini-instruct-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1)
    - [x] [KaLM-embedding-multilingual-mini-instruct-v1.5](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5)
    - [x] [KaLM-embedding-multilingual-mini-instruct-v2](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v2)
- [x] Training and Evaluation Code: [HITsz-TMG/KaLM-Embedding](https://github.com/HITsz-TMG/KaLM-Embedding)
- [x] Technical Report: [KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model](https://arxiv.org/abs/2501.01028)
- [ ] Training Data


## Evaluation
### Overall results on MTEB (cmn, v1) and MTEB (eng, v1).
![overall](./imgs/overall.jpg)

### Detailed model performance on MTEB (cmn, v1).
![mteb_cmn](./imgs/mteb_cmn.jpg)

### Detailed model performance on MTEB (eng, v1).
![mteb_cmn](./imgs/mteb_eng.jpg)

## Requirements
Since we have used the Qwen2 model, we advise you to install `transformers>=4.37.0`, or you might encounter the following error:
```
KeyError: 'qwen2'
```

## Usage

Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:

```
pip install -U sentence-transformers
```

Then you can use the model like this:

```python
from sentence_transformers import SentenceTransformer


sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer("{MODEL_NAME_OR_PATH}", trust_remote_code=True, truncate_dim=None, model_kwargs={"torch_dtype": torch.bfloat16, "attn_implementation": "flash_attention_2"})
model.max_seq_length = 512

embeddings = model.encode(
    sentences, 
    normalize_embeddings=True,
    batch_size=256, 
    show_progress_bar=True
    )
print(embeddings)
```

We add task instructions for queries in asymmetric tasks: retrieval, reranking, classification, and clustering.

And, we add task instructions for both queries and passages in symmetric tasks: STS and pair classification.

If you want to add task instructions to the query, you can use the model like this:

```python
from sentence_transformers import SentenceTransformer


sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer("{MODEL_NAME_OR_PATH}", trust_remote_code=True, truncate_dim=None, model_kwargs={"torch_dtype": torch.bfloat16, "attn_implementation": "flash_attention_2"})
model.max_seq_length = 512

prompt = "Instruct: Classifying the category of french news. \n Query: "
embeddings = model.encode(
    sentences, 
    prompt=prompt,
    normalize_embeddings=True,
    batch_size=256, 
    show_progress_bar=True
    )
print(embeddings)
```


## Citation
If you find this model useful, please consider giving a star and citation.
```
@article{zhao2025kalmv2,
  title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model},
  author={},
  journal={},
  year={2025}
}

@article{hu2025kalm,
  title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model},
  author={Hu, Xinshuo and Shan, Zifei and Zhao, Xinping and Sun, Zetian and Liu, Zhenyu and Li, Dongfang and Ye, Shaolin and Wei, Xinyuan and Chen, Qian and Hu, Baotian and others},
  journal={arXiv preprint arXiv:2501.01028},
  year={2025}
}
```


## Contact
If you encounter any issue, feel free to contact us via the email: <[email protected]>, <[email protected]>