Guilherme34 commited on
Commit
3330771
·
verified ·
1 Parent(s): 62498a7

Upload resampler.py with huggingface_hub

Browse files
Files changed (1) hide show
  1. resampler.py +864 -0
resampler.py ADDED
@@ -0,0 +1,864 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2025 The OpenBMB Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ import warnings
17
+ from functools import partial
18
+ from typing import Optional
19
+ from typing import Tuple, List
20
+
21
+ import numpy as np
22
+ import torch
23
+ import torch.nn.functional as F
24
+ from torch import nn
25
+ from torch import Tensor
26
+ from torch.nn.functional import *
27
+ from torch.nn.init import trunc_normal_
28
+ from torch.nn.modules.activation import *
29
+ from transformers.integrations import is_deepspeed_zero3_enabled
30
+
31
+
32
+ def get_2d_sincos_pos_embed(embed_dim, image_size):
33
+ """
34
+ image_size: image_size or (image_height, image_width)
35
+ return:
36
+ pos_embed: [image_height, image_width, embed_dim]
37
+ """
38
+ if isinstance(image_size, int):
39
+ grid_h_size, grid_w_size = image_size, image_size
40
+ else:
41
+ grid_h_size, grid_w_size = image_size[0], image_size[1]
42
+
43
+ grid_h = np.arange(grid_h_size, dtype=np.float32)
44
+ grid_w = np.arange(grid_w_size, dtype=np.float32)
45
+ grid = np.meshgrid(grid_w, grid_h) # here w goes first
46
+ grid = np.stack(grid, axis=0)
47
+
48
+ pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
49
+ return pos_embed
50
+
51
+
52
+ def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
53
+ assert embed_dim % 2 == 0
54
+
55
+ # use half of dimensions to encode grid_h
56
+ emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
57
+ emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
58
+
59
+ emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
60
+ return emb
61
+
62
+
63
+ def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
64
+ """
65
+ embed_dim: output dimension for each position
66
+ pos: a list of positions to be encoded: size (H, W)
67
+ out: (H, W, D)
68
+ """
69
+ assert embed_dim % 2 == 0
70
+ omega = np.arange(embed_dim // 2, dtype=np.float32)
71
+ omega /= embed_dim / 2.0
72
+ omega = 1.0 / 10000**omega # (D/2,)
73
+
74
+ out = np.einsum("hw,d->hwd", pos, omega) # (H, W, D/2), outer product
75
+
76
+ emb_sin = np.sin(out) # (H, W, D/2)
77
+ emb_cos = np.cos(out) # (H, W, D/2)
78
+
79
+ emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
80
+ return emb
81
+
82
+
83
+ class Resampler(nn.Module):
84
+ """
85
+ A 2D perceiver-resampler network with one cross attention layers by
86
+ given learnable queries and 2d sincos pos_emb
87
+ Outputs:
88
+ A tensor with the shape of (batch_size, num_queries, embed_dim)
89
+ """
90
+
91
+ def __init__(
92
+ self,
93
+ num_queries,
94
+ embed_dim,
95
+ num_heads,
96
+ kv_dim=None,
97
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
98
+ adaptive=False,
99
+ max_size=(70, 70),
100
+ ):
101
+ super().__init__()
102
+ self.num_queries = num_queries
103
+ self.embed_dim = embed_dim
104
+ self.num_heads = num_heads
105
+ self.adaptive = adaptive
106
+ self.max_size = max_size
107
+
108
+ self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
109
+
110
+ if kv_dim is not None and kv_dim != embed_dim:
111
+ self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
112
+ else:
113
+ self.kv_proj = nn.Identity()
114
+
115
+ self.attn = MultiheadAttention(embed_dim, num_heads)
116
+ self.ln_q = norm_layer(embed_dim)
117
+ self.ln_kv = norm_layer(embed_dim)
118
+
119
+ self.ln_post = norm_layer(embed_dim)
120
+ self.proj = nn.Parameter((embed_dim**-0.5) * torch.randn(embed_dim, embed_dim))
121
+
122
+ self._set_2d_pos_cache(self.max_size)
123
+
124
+ def _set_2d_pos_cache(self, max_size, device="cpu"):
125
+ if is_deepspeed_zero3_enabled():
126
+ device = "cuda"
127
+ pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
128
+ self.register_buffer("pos_embed", pos_embed, persistent=False)
129
+
130
+ def _adjust_pos_cache(self, tgt_sizes, device):
131
+ max_h = torch.max(tgt_sizes[:, 0])
132
+ max_w = torch.max(tgt_sizes[:, 1])
133
+ if max_h > self.max_size[0] or max_w > self.max_size[1]:
134
+ self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
135
+ self._set_2d_pos_cache(self.max_size, device)
136
+
137
+ def _init_weights(self, m):
138
+ if isinstance(m, nn.Linear):
139
+ trunc_normal_(m.weight, std=0.02)
140
+ if isinstance(m, nn.Linear) and m.bias is not None:
141
+ nn.init.constant_(m.bias, 0)
142
+ elif isinstance(m, nn.LayerNorm):
143
+ nn.init.constant_(m.bias, 0)
144
+ nn.init.constant_(m.weight, 1.0)
145
+
146
+ def forward(self, x, tgt_sizes=None):
147
+ assert x.shape[0] == tgt_sizes.shape[0]
148
+ bs = x.shape[0]
149
+
150
+ device = x.device
151
+ dtype = x.dtype
152
+
153
+ patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
154
+
155
+ self._adjust_pos_cache(tgt_sizes, device=device)
156
+
157
+ max_patch_len = torch.max(patch_len)
158
+ key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
159
+
160
+ pos_embed = []
161
+ for i in range(bs):
162
+ tgt_h, tgt_w = tgt_sizes[i]
163
+ pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
164
+ key_padding_mask[i, patch_len[i] :] = True
165
+
166
+ pos_embed = torch.nn.utils.rnn.pad_sequence(pos_embed, batch_first=True, padding_value=0.0).permute(
167
+ 1, 0, 2
168
+ ) # BLD => L * B * D
169
+
170
+ x = self.kv_proj(x) # B * L * D
171
+ x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
172
+
173
+ q = self.ln_q(self.query) # Q * D
174
+
175
+ out = self.attn(
176
+ self._repeat(q, bs), # Q * B * D
177
+ x + pos_embed, # L * B * D + L * B * D
178
+ x,
179
+ key_padding_mask=key_padding_mask,
180
+ )[0]
181
+ # out: Q * B * D
182
+ x = out.permute(1, 0, 2) # B * Q * D
183
+
184
+ x = self.ln_post(x)
185
+ x = x @ self.proj
186
+ return x
187
+
188
+ def _repeat(self, query, N: int):
189
+ return query.unsqueeze(1).repeat(1, N, 1)
190
+
191
+
192
+ class MultiheadAttention(nn.MultiheadAttention):
193
+ def __init__(
194
+ self,
195
+ embed_dim,
196
+ num_heads,
197
+ dropout=0.0,
198
+ bias=True,
199
+ add_bias_kv=False,
200
+ add_zero_attn=False,
201
+ kdim=None,
202
+ vdim=None,
203
+ batch_first=False,
204
+ device=None,
205
+ dtype=None,
206
+ ):
207
+ super().__init__(
208
+ embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype
209
+ )
210
+
211
+ # rewrite out_proj layer,with nn.Linear
212
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype)
213
+
214
+ def forward(
215
+ self,
216
+ query: Tensor,
217
+ key: Tensor,
218
+ value: Tensor,
219
+ key_padding_mask: Optional[Tensor] = None,
220
+ need_weights: bool = True,
221
+ attn_mask: Optional[Tensor] = None,
222
+ average_attn_weights: bool = True,
223
+ is_causal: bool = False,
224
+ ) -> Tuple[Tensor, Optional[Tensor]]:
225
+ why_not_fast_path = ""
226
+ if (
227
+ (attn_mask is not None and torch.is_floating_point(attn_mask))
228
+ or (key_padding_mask is not None)
229
+ and torch.is_floating_point(key_padding_mask)
230
+ ):
231
+ why_not_fast_path = "floating-point masks are not supported for fast path."
232
+
233
+ is_batched = query.dim() == 3
234
+
235
+ key_padding_mask = _canonical_mask(
236
+ mask=key_padding_mask,
237
+ mask_name="key_padding_mask",
238
+ other_type=F._none_or_dtype(attn_mask),
239
+ other_name="attn_mask",
240
+ target_type=query.dtype,
241
+ )
242
+
243
+ attn_mask = _canonical_mask(
244
+ mask=attn_mask,
245
+ mask_name="attn_mask",
246
+ other_type=None,
247
+ other_name="",
248
+ target_type=query.dtype,
249
+ check_other=False,
250
+ )
251
+
252
+ if not is_batched:
253
+ why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
254
+ elif query is not key or key is not value:
255
+ # When lifting this restriction, don't forget to either
256
+ # enforce that the dtypes all match or test cases where
257
+ # they don't!
258
+ why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
259
+ elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
260
+ why_not_fast_path = (
261
+ f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
262
+ )
263
+ elif self.in_proj_weight is None:
264
+ why_not_fast_path = "in_proj_weight was None"
265
+ elif query.dtype != self.in_proj_weight.dtype:
266
+ # this case will fail anyway, but at least they'll get a useful error message.
267
+ why_not_fast_path = (
268
+ f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
269
+ )
270
+ elif self.training:
271
+ why_not_fast_path = "training is enabled"
272
+ elif (self.num_heads % 2) != 0:
273
+ why_not_fast_path = "self.num_heads is not even"
274
+ elif not self.batch_first:
275
+ why_not_fast_path = "batch_first was not True"
276
+ elif self.bias_k is not None:
277
+ why_not_fast_path = "self.bias_k was not None"
278
+ elif self.bias_v is not None:
279
+ why_not_fast_path = "self.bias_v was not None"
280
+ elif self.add_zero_attn:
281
+ why_not_fast_path = "add_zero_attn was enabled"
282
+ elif not self._qkv_same_embed_dim:
283
+ why_not_fast_path = "_qkv_same_embed_dim was not True"
284
+ elif query.is_nested and (key_padding_mask is not None or attn_mask is not None):
285
+ why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \
286
+ is not supported with NestedTensor input"
287
+ elif torch.is_autocast_enabled():
288
+ why_not_fast_path = "autocast is enabled"
289
+
290
+ if not why_not_fast_path:
291
+ tensor_args = (
292
+ query,
293
+ key,
294
+ value,
295
+ self.in_proj_weight,
296
+ self.in_proj_bias,
297
+ self.out_proj.weight,
298
+ self.out_proj.bias,
299
+ )
300
+ # We have to use list comprehensions below because TorchScript does not support
301
+ # generator expressions.
302
+ if torch.overrides.has_torch_function(tensor_args):
303
+ why_not_fast_path = "some Tensor argument has_torch_function"
304
+ elif _is_make_fx_tracing():
305
+ why_not_fast_path = "we are running make_fx tracing"
306
+ elif not all(_check_arg_device(x) for x in tensor_args):
307
+ why_not_fast_path = (
308
+ "some Tensor argument's device is neither one of "
309
+ f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}"
310
+ )
311
+ elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args):
312
+ why_not_fast_path = (
313
+ "grad is enabled and at least one of query or the "
314
+ "input/output projection weights or biases requires_grad"
315
+ )
316
+ if not why_not_fast_path:
317
+ merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query)
318
+
319
+ if self.in_proj_bias is not None and self.in_proj_weight is not None:
320
+ return torch._native_multi_head_attention(
321
+ query,
322
+ key,
323
+ value,
324
+ self.embed_dim,
325
+ self.num_heads,
326
+ self.in_proj_weight,
327
+ self.in_proj_bias,
328
+ self.out_proj.weight,
329
+ self.out_proj.bias,
330
+ merged_mask,
331
+ need_weights,
332
+ average_attn_weights,
333
+ mask_type,
334
+ )
335
+
336
+ any_nested = query.is_nested or key.is_nested or value.is_nested
337
+ assert not any_nested, (
338
+ "MultiheadAttention does not support NestedTensor outside of its fast path. "
339
+ + f"The fast path was not hit because {why_not_fast_path}"
340
+ )
341
+
342
+ if self.batch_first and is_batched:
343
+ # make sure that the transpose op does not affect the "is" property
344
+ if key is value:
345
+ if query is key:
346
+ query = key = value = query.transpose(1, 0)
347
+ else:
348
+ query, key = (x.transpose(1, 0) for x in (query, key))
349
+ value = key
350
+ else:
351
+ query, key, value = (x.transpose(1, 0) for x in (query, key, value))
352
+
353
+ if not self._qkv_same_embed_dim:
354
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
355
+ query,
356
+ key,
357
+ value,
358
+ self.embed_dim,
359
+ self.num_heads,
360
+ self.in_proj_weight,
361
+ self.in_proj_bias,
362
+ self.bias_k,
363
+ self.bias_v,
364
+ self.add_zero_attn,
365
+ self.dropout,
366
+ self.out_proj.weight,
367
+ self.out_proj.bias,
368
+ training=self.training,
369
+ key_padding_mask=key_padding_mask,
370
+ need_weights=need_weights,
371
+ attn_mask=attn_mask,
372
+ use_separate_proj_weight=True,
373
+ q_proj_weight=self.q_proj_weight,
374
+ k_proj_weight=self.k_proj_weight,
375
+ v_proj_weight=self.v_proj_weight,
376
+ average_attn_weights=average_attn_weights,
377
+ is_causal=is_causal,
378
+ )
379
+ else:
380
+ attn_output, attn_output_weights = self.multi_head_attention_forward(
381
+ query,
382
+ key,
383
+ value,
384
+ self.embed_dim,
385
+ self.num_heads,
386
+ self.in_proj_weight,
387
+ self.in_proj_bias,
388
+ self.bias_k,
389
+ self.bias_v,
390
+ self.add_zero_attn,
391
+ self.dropout,
392
+ self.out_proj.weight,
393
+ self.out_proj.bias,
394
+ training=self.training,
395
+ key_padding_mask=key_padding_mask,
396
+ need_weights=need_weights,
397
+ attn_mask=attn_mask,
398
+ average_attn_weights=average_attn_weights,
399
+ is_causal=is_causal,
400
+ )
401
+ if self.batch_first and is_batched:
402
+ return attn_output.transpose(1, 0), attn_output_weights
403
+ else:
404
+ return attn_output, attn_output_weights
405
+
406
+ def multi_head_attention_forward(
407
+ self,
408
+ query: Tensor,
409
+ key: Tensor,
410
+ value: Tensor,
411
+ embed_dim_to_check: int,
412
+ num_heads: int,
413
+ in_proj_weight: Optional[Tensor],
414
+ in_proj_bias: Optional[Tensor],
415
+ bias_k: Optional[Tensor],
416
+ bias_v: Optional[Tensor],
417
+ add_zero_attn: bool,
418
+ dropout_p: float,
419
+ out_proj_weight: Tensor,
420
+ out_proj_bias: Optional[Tensor],
421
+ training: bool = True,
422
+ key_padding_mask: Optional[Tensor] = None,
423
+ need_weights: bool = True,
424
+ attn_mask: Optional[Tensor] = None,
425
+ use_separate_proj_weight: bool = False,
426
+ q_proj_weight: Optional[Tensor] = None,
427
+ k_proj_weight: Optional[Tensor] = None,
428
+ v_proj_weight: Optional[Tensor] = None,
429
+ static_k: Optional[Tensor] = None,
430
+ static_v: Optional[Tensor] = None,
431
+ average_attn_weights: bool = True,
432
+ is_causal: bool = False,
433
+ ) -> Tuple[Tensor, Optional[Tensor]]:
434
+ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
435
+
436
+ is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
437
+
438
+ # For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
439
+ # is batched, run the computation and before returning squeeze the
440
+ # batch dimension so that the output doesn't carry this temporary batch dimension.
441
+ if not is_batched:
442
+ # unsqueeze if the input is unbatched
443
+ query = query.unsqueeze(1)
444
+ key = key.unsqueeze(1)
445
+ value = value.unsqueeze(1)
446
+ if key_padding_mask is not None:
447
+ key_padding_mask = key_padding_mask.unsqueeze(0)
448
+
449
+ # set up shape vars
450
+ tgt_len, bsz, embed_dim = query.shape
451
+ src_len, _, _ = key.shape
452
+
453
+ key_padding_mask = _canonical_mask(
454
+ mask=key_padding_mask,
455
+ mask_name="key_padding_mask",
456
+ other_type=F._none_or_dtype(attn_mask),
457
+ other_name="attn_mask",
458
+ target_type=query.dtype,
459
+ )
460
+
461
+ if is_causal and attn_mask is None:
462
+ raise RuntimeError(
463
+ "Need attn_mask if specifying the is_causal hint. "
464
+ "You may use the Transformer module method "
465
+ "`generate_square_subsequent_mask` to create this mask."
466
+ )
467
+
468
+ if is_causal and key_padding_mask is None and not need_weights:
469
+ # when we have a kpm or need weights, we need attn_mask
470
+ # Otherwise, we use the is_causal hint go as is_causal
471
+ # indicator to SDPA.
472
+ attn_mask = None
473
+ else:
474
+ attn_mask = _canonical_mask(
475
+ mask=attn_mask,
476
+ mask_name="attn_mask",
477
+ other_type=None,
478
+ other_name="",
479
+ target_type=query.dtype,
480
+ check_other=False,
481
+ )
482
+
483
+ if key_padding_mask is not None:
484
+ # We have the attn_mask, and use that to merge kpm into it.
485
+ # Turn off use of is_causal hint, as the merged mask is no
486
+ # longer causal.
487
+ is_causal = False
488
+
489
+ assert (
490
+ embed_dim == embed_dim_to_check
491
+ ), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
492
+ if isinstance(embed_dim, torch.Tensor):
493
+ # embed_dim can be a tensor when JIT tracing
494
+ head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
495
+ else:
496
+ head_dim = embed_dim // num_heads
497
+ assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
498
+ if use_separate_proj_weight:
499
+ # allow MHA to have different embedding dimensions when separate projection weights are used
500
+ assert (
501
+ key.shape[:2] == value.shape[:2]
502
+ ), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
503
+ else:
504
+ assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
505
+
506
+ #
507
+ # compute in-projection
508
+ #
509
+ if not use_separate_proj_weight:
510
+ assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
511
+ q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
512
+ else:
513
+ assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
514
+ assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
515
+ assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
516
+ if in_proj_bias is None:
517
+ b_q = b_k = b_v = None
518
+ else:
519
+ b_q, b_k, b_v = in_proj_bias.chunk(3)
520
+ q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
521
+
522
+ # prep attention mask
523
+
524
+ if attn_mask is not None:
525
+ # ensure attn_mask's dim is 3
526
+ if attn_mask.dim() == 2:
527
+ correct_2d_size = (tgt_len, src_len)
528
+ if attn_mask.shape != correct_2d_size:
529
+ raise RuntimeError(
530
+ f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
531
+ )
532
+ attn_mask = attn_mask.unsqueeze(0)
533
+ elif attn_mask.dim() == 3:
534
+ correct_3d_size = (bsz * num_heads, tgt_len, src_len)
535
+ if attn_mask.shape != correct_3d_size:
536
+ raise RuntimeError(
537
+ f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
538
+ )
539
+ else:
540
+ raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
541
+
542
+ # add bias along batch dimension (currently second)
543
+ if bias_k is not None and bias_v is not None:
544
+ assert static_k is None, "bias cannot be added to static key."
545
+ assert static_v is None, "bias cannot be added to static value."
546
+ k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
547
+ v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
548
+ if attn_mask is not None:
549
+ attn_mask = pad(attn_mask, (0, 1))
550
+ if key_padding_mask is not None:
551
+ key_padding_mask = pad(key_padding_mask, (0, 1))
552
+ else:
553
+ assert bias_k is None
554
+ assert bias_v is None
555
+
556
+ #
557
+ # reshape q, k, v for multihead attention and make em batch first
558
+ #
559
+ q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
560
+ if static_k is None:
561
+ k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
562
+ else:
563
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
564
+ assert (
565
+ static_k.size(0) == bsz * num_heads
566
+ ), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
567
+ assert static_k.size(2) == head_dim, f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
568
+ k = static_k
569
+ if static_v is None:
570
+ v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
571
+ else:
572
+ # TODO finish disentangling control flow so we don't do in-projections when statics are passed
573
+ assert (
574
+ static_v.size(0) == bsz * num_heads
575
+ ), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
576
+ assert static_v.size(2) == head_dim, f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
577
+ v = static_v
578
+
579
+ # add zero attention along batch dimension (now first)
580
+ if add_zero_attn:
581
+ zero_attn_shape = (bsz * num_heads, 1, head_dim)
582
+ k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
583
+ v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
584
+ if attn_mask is not None:
585
+ attn_mask = pad(attn_mask, (0, 1))
586
+ if key_padding_mask is not None:
587
+ key_padding_mask = pad(key_padding_mask, (0, 1))
588
+
589
+ # update source sequence length after adjustments
590
+ src_len = k.size(1)
591
+
592
+ # merge key padding and attention masks
593
+ if key_padding_mask is not None:
594
+ assert key_padding_mask.shape == (
595
+ bsz,
596
+ src_len,
597
+ ), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
598
+ key_padding_mask = (
599
+ key_padding_mask.view(bsz, 1, 1, src_len)
600
+ .expand(-1, num_heads, -1, -1)
601
+ .reshape(bsz * num_heads, 1, src_len)
602
+ )
603
+ if attn_mask is None:
604
+ attn_mask = key_padding_mask
605
+ else:
606
+ attn_mask = attn_mask + key_padding_mask
607
+
608
+ # adjust dropout probability
609
+ if not training:
610
+ dropout_p = 0.0
611
+
612
+ #
613
+ # (deep breath) calculate attention and out projection
614
+ #
615
+
616
+ if need_weights:
617
+ B, Nt, E = q.shape
618
+ q_scaled = q / math.sqrt(E)
619
+
620
+ assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
621
+
622
+ if attn_mask is not None:
623
+ attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
624
+ else:
625
+ attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
626
+ attn_output_weights = softmax(attn_output_weights, dim=-1)
627
+ if dropout_p > 0.0:
628
+ attn_output_weights = dropout(attn_output_weights, p=dropout_p)
629
+
630
+ attn_output = torch.bmm(attn_output_weights, v)
631
+
632
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
633
+ attn_output = self.out_proj(attn_output)
634
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
635
+
636
+ # optionally average attention weights over heads
637
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
638
+ if average_attn_weights:
639
+ attn_output_weights = attn_output_weights.mean(dim=1)
640
+
641
+ if not is_batched:
642
+ # squeeze the output if input was unbatched
643
+ attn_output = attn_output.squeeze(1)
644
+ attn_output_weights = attn_output_weights.squeeze(0)
645
+ return attn_output, attn_output_weights
646
+ else:
647
+ # attn_mask can be either (L,S) or (N*num_heads, L, S)
648
+ # if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
649
+ # in order to match the input for SDPA of (N, num_heads, L, S)
650
+ if attn_mask is not None:
651
+ if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
652
+ attn_mask = attn_mask.unsqueeze(0)
653
+ else:
654
+ attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
655
+
656
+ q = q.view(bsz, num_heads, tgt_len, head_dim)
657
+ k = k.view(bsz, num_heads, src_len, head_dim)
658
+ v = v.view(bsz, num_heads, src_len, head_dim)
659
+
660
+ attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
661
+ attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
662
+
663
+ attn_output = self.out_proj(attn_output)
664
+ attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
665
+ if not is_batched:
666
+ # squeeze the output if input was unbatched
667
+ attn_output = attn_output.squeeze(1)
668
+ return attn_output, None
669
+
670
+
671
+ def _mha_shape_check(
672
+ query: Tensor,
673
+ key: Tensor,
674
+ value: Tensor,
675
+ key_padding_mask: Optional[Tensor],
676
+ attn_mask: Optional[Tensor],
677
+ num_heads: int,
678
+ ):
679
+ # Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
680
+ # and returns if the input is batched or not.
681
+ # Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
682
+
683
+ # Shape check.
684
+ if query.dim() == 3:
685
+ # Batched Inputs
686
+ is_batched = True
687
+ assert key.dim() == 3 and value.dim() == 3, (
688
+ "For batched (3-D) `query`, expected `key` and `value` to be 3-D"
689
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively"
690
+ )
691
+ if key_padding_mask is not None:
692
+ assert key_padding_mask.dim() == 2, (
693
+ "For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
694
+ f" but found {key_padding_mask.dim()}-D tensor instead"
695
+ )
696
+ if attn_mask is not None:
697
+ assert attn_mask.dim() in (2, 3), (
698
+ "For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
699
+ f" but found {attn_mask.dim()}-D tensor instead"
700
+ )
701
+ elif query.dim() == 2:
702
+ # Unbatched Inputs
703
+ is_batched = False
704
+ assert key.dim() == 2 and value.dim() == 2, (
705
+ "For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
706
+ f" but found {key.dim()}-D and {value.dim()}-D tensors respectively"
707
+ )
708
+
709
+ if key_padding_mask is not None:
710
+ assert key_padding_mask.dim() == 1, (
711
+ "For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
712
+ f" but found {key_padding_mask.dim()}-D tensor instead"
713
+ )
714
+
715
+ if attn_mask is not None:
716
+ assert attn_mask.dim() in (2, 3), (
717
+ "For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
718
+ f" but found {attn_mask.dim()}-D tensor instead"
719
+ )
720
+ if attn_mask.dim() == 3:
721
+ expected_shape = (num_heads, query.shape[0], key.shape[0])
722
+ assert (
723
+ attn_mask.shape == expected_shape
724
+ ), f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}"
725
+ else:
726
+ raise AssertionError(
727
+ f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor"
728
+ )
729
+
730
+ return is_batched
731
+
732
+
733
+ def _canonical_mask(
734
+ mask: Optional[Tensor],
735
+ mask_name: str,
736
+ other_type: Optional[DType],
737
+ other_name: str,
738
+ target_type: DType,
739
+ check_other: bool = True,
740
+ ) -> Optional[Tensor]:
741
+
742
+ if mask is not None:
743
+ _mask_dtype = mask.dtype
744
+ _mask_is_float = torch.is_floating_point(mask)
745
+ if _mask_dtype != torch.bool and not _mask_is_float:
746
+ raise AssertionError(f"only bool and floating types of {mask_name} are supported")
747
+ if check_other and other_type is not None:
748
+ if _mask_dtype != other_type:
749
+ warnings.warn(
750
+ f"Support for mismatched {mask_name} and {other_name} "
751
+ "is deprecated. Use same type for both instead."
752
+ )
753
+ if not _mask_is_float:
754
+ mask = torch.zeros_like(mask, dtype=target_type).masked_fill_(mask, float("-inf"))
755
+ return mask
756
+
757
+
758
+ def _in_projection_packed(
759
+ q: Tensor,
760
+ k: Tensor,
761
+ v: Tensor,
762
+ w: Tensor,
763
+ b: Optional[Tensor] = None,
764
+ ) -> List[Tensor]:
765
+ r"""
766
+ Performs the in-projection step of the attention operation, using packed weights.
767
+ Output is a triple containing projection tensors for query, key and value.
768
+ Args:
769
+ q, k, v: query, key and value tensors to be projected. For self-attention,
770
+ these are typically the same tensor; for encoder-decoder attention,
771
+ k and v are typically the same tensor. (We take advantage of these
772
+ identities for performance if they are present.) Regardless, q, k and v
773
+ must share a common embedding dimension; otherwise their shapes may vary.
774
+ w: projection weights for q, k and v, packed into a single tensor. Weights
775
+ are packed along dimension 0, in q, k, v order.
776
+ b: optional projection biases for q, k and v, packed into a single tensor
777
+ in q, k, v order.
778
+ Shape:
779
+ Inputs:
780
+ - q: :math:`(..., E)` where E is the embedding dimension
781
+ - k: :math:`(..., E)` where E is the embedding dimension
782
+ - v: :math:`(..., E)` where E is the embedding dimension
783
+ - w: :math:`(E * 3, E)` where E is the embedding dimension
784
+ - b: :math:`E * 3` where E is the embedding dimension
785
+ Output:
786
+ - in output list :math:`[q', k', v']`, each output tensor will have the
787
+ same shape as the corresponding input tensor.
788
+ """
789
+ E = q.size(-1)
790
+ if k is v:
791
+ if q is k:
792
+ # self-attention
793
+ proj = linear(q, w, b)
794
+ # reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
795
+ proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
796
+ return proj[0], proj[1], proj[2]
797
+ else:
798
+ # encoder-decoder attention
799
+ w_q, w_kv = w.split([E, E * 2])
800
+ if b is None:
801
+ b_q = b_kv = None
802
+ else:
803
+ b_q, b_kv = b.split([E, E * 2])
804
+ q_proj = linear(q, w_q, b_q)
805
+ kv_proj = linear(k, w_kv, b_kv)
806
+ # reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
807
+ kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
808
+ return (q_proj, kv_proj[0], kv_proj[1])
809
+ else:
810
+ w_q, w_k, w_v = w.chunk(3)
811
+ if b is None:
812
+ b_q = b_k = b_v = None
813
+ else:
814
+ b_q, b_k, b_v = b.chunk(3)
815
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
816
+
817
+
818
+ def _in_projection(
819
+ q: Tensor,
820
+ k: Tensor,
821
+ v: Tensor,
822
+ w_q: Tensor,
823
+ w_k: Tensor,
824
+ w_v: Tensor,
825
+ b_q: Optional[Tensor] = None,
826
+ b_k: Optional[Tensor] = None,
827
+ b_v: Optional[Tensor] = None,
828
+ ) -> Tuple[Tensor, Tensor, Tensor]:
829
+ r"""
830
+ Performs the in-projection step of the attention operation. This is simply
831
+ a triple of linear projections, with shape constraints on the weights which
832
+ ensure embedding dimension uniformity in the projected outputs.
833
+ Output is a triple containing projection tensors for query, key and value.
834
+ Args:
835
+ q, k, v: query, key and value tensors to be projected.
836
+ w_q, w_k, w_v: weights for q, k and v, respectively.
837
+ b_q, b_k, b_v: optional biases for q, k and v, respectively.
838
+ Shape:
839
+ Inputs:
840
+ - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
841
+ number of leading dimensions.
842
+ - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
843
+ number of leading dimensions.
844
+ - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
845
+ number of leading dimensions.
846
+ - w_q: :math:`(Eq, Eq)`
847
+ - w_k: :math:`(Eq, Ek)`
848
+ - w_v: :math:`(Eq, Ev)`
849
+ - b_q: :math:`(Eq)`
850
+ - b_k: :math:`(Eq)`
851
+ - b_v: :math:`(Eq)`
852
+ Output: in output triple :math:`(q', k', v')`,
853
+ - q': :math:`[Qdims..., Eq]`
854
+ - k': :math:`[Kdims..., Eq]`
855
+ - v': :math:`[Vdims..., Eq]`
856
+ """
857
+ Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
858
+ assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
859
+ assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
860
+ assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
861
+ assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
862
+ assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
863
+ assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
864
+ return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)