Upload processing_minicpmo.py with huggingface_hub
Browse files- processing_minicpmo.py +505 -0
processing_minicpmo.py
ADDED
@@ -0,0 +1,505 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2025 The OpenBMB Team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for MiniCPMO.
|
17 |
+
"""
|
18 |
+
|
19 |
+
import math
|
20 |
+
import re
|
21 |
+
from typing import List
|
22 |
+
from typing import Literal
|
23 |
+
from typing import Optional
|
24 |
+
from typing import Union
|
25 |
+
|
26 |
+
import numpy as np
|
27 |
+
import torch
|
28 |
+
import torchaudio
|
29 |
+
from transformers.image_utils import ImageInput
|
30 |
+
from transformers.processing_utils import ProcessorMixin
|
31 |
+
from transformers.tokenization_utils_base import PreTokenizedInput
|
32 |
+
from transformers.tokenization_utils_base import TextInput
|
33 |
+
from transformers.utils import TensorType
|
34 |
+
|
35 |
+
from .image_processing_minicpmv import MiniCPMOBatchFeature
|
36 |
+
|
37 |
+
|
38 |
+
class MiniCPMOProcessor(ProcessorMixin):
|
39 |
+
r"""
|
40 |
+
Constructs a MiniCPMV processor which wraps a MiniCPMV image processor and a MiniCPMV tokenizer into a single processor.
|
41 |
+
|
42 |
+
[`MiniCPMVProcessor`] offers all the functionalities of [`MiniCPMVImageProcessor`] and [`LlamaTokenizerWrapper`]. See the
|
43 |
+
[`~MiniCPMVProcessor.__call__`] and [`~MiniCPMVProcessor.decode`] for more information.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
image_processor ([`MiniCPMVImageProcessor`], *optional*):
|
47 |
+
The image processor is a required input.
|
48 |
+
tokenizer ([`LlamaTokenizerWrapper`], *optional*):
|
49 |
+
The tokenizer is a required input.
|
50 |
+
"""
|
51 |
+
|
52 |
+
attributes = ["image_processor", "feature_extractor", "tokenizer"]
|
53 |
+
feature_extractor_class = "WhisperFeatureExtractor"
|
54 |
+
image_processor_class = "AutoImageProcessor"
|
55 |
+
tokenizer_class = "AutoTokenizer"
|
56 |
+
|
57 |
+
def __init__(self, image_processor=None, feature_extractor=None, tokenizer=None):
|
58 |
+
super().__init__(image_processor, feature_extractor, tokenizer)
|
59 |
+
self.version = image_processor.version
|
60 |
+
|
61 |
+
def __call__(
|
62 |
+
self,
|
63 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
64 |
+
images: ImageInput = None,
|
65 |
+
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]] = None,
|
66 |
+
audio_parts: Optional[list] = None,
|
67 |
+
max_length: Optional[int] = None,
|
68 |
+
do_pad: Optional[bool] = True,
|
69 |
+
max_slice_nums: int = None,
|
70 |
+
use_image_id: bool = True,
|
71 |
+
chunk_input: bool = False,
|
72 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
73 |
+
sampling_rate: Optional[int] = 16000,
|
74 |
+
**kwargs,
|
75 |
+
) -> MiniCPMOBatchFeature:
|
76 |
+
if images is not None:
|
77 |
+
image_inputs = self.image_processor(
|
78 |
+
images, do_pad=do_pad, max_slice_nums=max_slice_nums, return_tensors=return_tensors
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
image_inputs = None
|
82 |
+
|
83 |
+
if audios is not None:
|
84 |
+
audio_features, audio_feature_lens, audio_phs = self.audio_feature_extract(
|
85 |
+
audios, audio_parts, chunk_input, sampling_rate
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
audio_features, audio_feature_lens, audio_phs = [], [], []
|
89 |
+
|
90 |
+
model_inputs = self._convert_omni_to_inputs(
|
91 |
+
image_inputs,
|
92 |
+
audio_phs,
|
93 |
+
text,
|
94 |
+
max_slice_nums=max_slice_nums,
|
95 |
+
use_image_id=use_image_id,
|
96 |
+
max_length=max_length,
|
97 |
+
**kwargs,
|
98 |
+
)
|
99 |
+
|
100 |
+
model_inputs["audio_features"] = audio_features
|
101 |
+
model_inputs["audio_feature_lens"] = audio_feature_lens
|
102 |
+
|
103 |
+
return MiniCPMOBatchFeature(data={**model_inputs})
|
104 |
+
|
105 |
+
def get_audio_placeholder(self, audio_lens, chunk_input, chunk_length):
|
106 |
+
pool_step = 2
|
107 |
+
feature_lens = math.ceil(audio_lens / self.feature_extractor.hop_length)
|
108 |
+
|
109 |
+
feature_lens = (feature_lens - 1) // 2 + 1
|
110 |
+
output_lens = (feature_lens - pool_step) // pool_step + 1
|
111 |
+
|
112 |
+
if chunk_input:
|
113 |
+
fbank_feat_in_chunk = int(chunk_length * 100)
|
114 |
+
cnn_feat_in_chunk = (fbank_feat_in_chunk - 1) // 2 + 1
|
115 |
+
audio_embeds_in_chunk = (cnn_feat_in_chunk - pool_step) // pool_step + 1
|
116 |
+
num_audio_chunks = (output_lens + audio_embeds_in_chunk - 1) // audio_embeds_in_chunk
|
117 |
+
|
118 |
+
place_holders = ""
|
119 |
+
total_unk_len = 0
|
120 |
+
for _ in range(num_audio_chunks):
|
121 |
+
unk_len = min(audio_embeds_in_chunk, output_lens - total_unk_len)
|
122 |
+
place_holders += self.tokenizer.audio_start + "<unk>" * unk_len + self.tokenizer.audio_end
|
123 |
+
total_unk_len += unk_len
|
124 |
+
audio_placeholder = place_holders
|
125 |
+
else:
|
126 |
+
audio_placeholder = self.tokenizer.audio_start + "<unk>" * output_lens + self.tokenizer.audio_end
|
127 |
+
|
128 |
+
return audio_placeholder
|
129 |
+
|
130 |
+
def audio_feature_extract(
|
131 |
+
self,
|
132 |
+
audios: Union[np.ndarray, List[np.ndarray], List[List[np.ndarray]]],
|
133 |
+
audio_parts: Optional[list] = None,
|
134 |
+
chunk_input: Optional[bool] = False,
|
135 |
+
sampling_rate: Optional[int] = None,
|
136 |
+
chunk_length: Optional[int] = 1,
|
137 |
+
**kwargs,
|
138 |
+
):
|
139 |
+
if isinstance(audios, np.ndarray):
|
140 |
+
audios_list = [[audios]]
|
141 |
+
elif isinstance(audios[0], np.ndarray):
|
142 |
+
audios_list = [audios]
|
143 |
+
else:
|
144 |
+
audios_list = audios
|
145 |
+
|
146 |
+
if audio_parts is not None:
|
147 |
+
assert len(audio_parts) == len(audios_list)
|
148 |
+
for parts, audios in zip(audio_parts, audios_list):
|
149 |
+
assert len(parts) == len(audios)
|
150 |
+
|
151 |
+
audio_feature_lens_list = []
|
152 |
+
audio_ph_list = []
|
153 |
+
|
154 |
+
audio_features_all = []
|
155 |
+
|
156 |
+
# audio placeholder not dependent on audio_parts
|
157 |
+
for audios in audios_list:
|
158 |
+
if audios:
|
159 |
+
audio_ph_list.append([self.get_audio_placeholder(len(a), chunk_input, chunk_length) for a in audios])
|
160 |
+
else:
|
161 |
+
audio_ph_list.append([])
|
162 |
+
|
163 |
+
for idx, audios in enumerate(audios_list):
|
164 |
+
if audio_parts is not None:
|
165 |
+
# same audio part merge
|
166 |
+
audio_part = audio_parts[idx]
|
167 |
+
merge_audio = []
|
168 |
+
cur_audio = []
|
169 |
+
for aid, (part, audio) in enumerate(zip(audio_part, audios)):
|
170 |
+
if aid == 0 or audio_part[aid] == audio_part[aid - 1]:
|
171 |
+
cur_audio.append(audio)
|
172 |
+
else:
|
173 |
+
merge_audio.append(np.hstack(cur_audio))
|
174 |
+
cur_audio = [audio]
|
175 |
+
if cur_audio:
|
176 |
+
merge_audio.append(np.hstack(cur_audio))
|
177 |
+
|
178 |
+
else:
|
179 |
+
merge_audio = audios
|
180 |
+
|
181 |
+
audio_feature_lens = []
|
182 |
+
|
183 |
+
# If the audio exceeds 30 seconds, split it into chunks every 30 seconds.
|
184 |
+
final_merge_audio = []
|
185 |
+
max_audio_inp_len = 30 * sampling_rate
|
186 |
+
for audio in merge_audio:
|
187 |
+
if len(audio) <= max_audio_inp_len:
|
188 |
+
final_merge_audio.append(audio)
|
189 |
+
else:
|
190 |
+
for i in range(math.ceil(len(audio) / max_audio_inp_len)):
|
191 |
+
final_merge_audio.append(audio[i * max_audio_inp_len : (i + 1) * max_audio_inp_len])
|
192 |
+
|
193 |
+
if audios:
|
194 |
+
audio_inputs = self.feature_extractor(
|
195 |
+
final_merge_audio,
|
196 |
+
sampling_rate=sampling_rate,
|
197 |
+
return_attention_mask=True,
|
198 |
+
padding="max_length",
|
199 |
+
return_tensors="pt",
|
200 |
+
**kwargs,
|
201 |
+
)
|
202 |
+
audio_feature = audio_inputs["input_features"]
|
203 |
+
actual_lens = audio_inputs["attention_mask"].sum(dim=1)
|
204 |
+
|
205 |
+
for feat, lens in zip(audio_feature, actual_lens):
|
206 |
+
audio_features_all.append(feat[:, :lens])
|
207 |
+
audio_feature_lens.append(lens)
|
208 |
+
|
209 |
+
audio_feature_lens = torch.hstack(audio_feature_lens)
|
210 |
+
audio_feature_lens_list.append(audio_feature_lens)
|
211 |
+
else:
|
212 |
+
audio_feature_lens_list.append([])
|
213 |
+
|
214 |
+
if audio_features_all:
|
215 |
+
audio_features = [i.permute(1, 0) for i in audio_features_all]
|
216 |
+
audio_features = torch.nn.utils.rnn.pad_sequence(
|
217 |
+
audio_features, batch_first=True, padding_value=0.0
|
218 |
+
).permute(0, 2, 1)
|
219 |
+
else:
|
220 |
+
audio_features = []
|
221 |
+
|
222 |
+
return audio_features, audio_feature_lens_list, audio_ph_list
|
223 |
+
|
224 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
|
225 |
+
def batch_decode(self, *args, **kwargs):
|
226 |
+
"""
|
227 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
228 |
+
refer to the docstring of this method for more information.
|
229 |
+
"""
|
230 |
+
output_ids = args[0]
|
231 |
+
result_text = []
|
232 |
+
for result in output_ids:
|
233 |
+
result = result[result != 0]
|
234 |
+
if result[0] == self.tokenizer.bos_id:
|
235 |
+
result = result[1:]
|
236 |
+
if result[-1] == self.tokenizer.eos_id:
|
237 |
+
result = result[:-1]
|
238 |
+
result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
|
239 |
+
return result_text
|
240 |
+
# return self.tokenizer.batch_decode(*args, **kwargs)
|
241 |
+
|
242 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
|
243 |
+
def decode(self, *args, **kwargs):
|
244 |
+
"""
|
245 |
+
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
246 |
+
the docstring of this method for more information.
|
247 |
+
"""
|
248 |
+
result = args[0]
|
249 |
+
result = result[result != 0]
|
250 |
+
if result[0] == self.tokenizer.bos_id:
|
251 |
+
result = result[1:]
|
252 |
+
if result[-1] == self.tokenizer.eos_id or (
|
253 |
+
hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id
|
254 |
+
):
|
255 |
+
result = result[:-1]
|
256 |
+
return self.tokenizer.decode(result, *args[1:], **kwargs).strip()
|
257 |
+
|
258 |
+
def _convert(self, input_str, max_inp_length: Optional[int] = None, **kwargs):
|
259 |
+
input_ids = self.tokenizer.encode(input_str, **kwargs)
|
260 |
+
if max_inp_length is not None:
|
261 |
+
input_ids = input_ids[:max_inp_length]
|
262 |
+
input_ids = torch.tensor(input_ids, dtype=torch.int32)
|
263 |
+
|
264 |
+
## image bound
|
265 |
+
start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
|
266 |
+
end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)
|
267 |
+
|
268 |
+
image_start_idx = torch.where(start_cond)[0]
|
269 |
+
image_start_idx += 1
|
270 |
+
image_end_idx = torch.where(end_cond)[0]
|
271 |
+
|
272 |
+
valid_image_nums = max(len(image_start_idx), len(image_end_idx))
|
273 |
+
|
274 |
+
image_bounds = torch.hstack(
|
275 |
+
[
|
276 |
+
image_start_idx[:valid_image_nums].unsqueeze(-1),
|
277 |
+
image_end_idx[:valid_image_nums].unsqueeze(-1),
|
278 |
+
]
|
279 |
+
)
|
280 |
+
|
281 |
+
## audio bound
|
282 |
+
audio_start_idx = torch.where(input_ids == self.tokenizer.audio_start_id)[0]
|
283 |
+
audio_end_idx = torch.where(input_ids == self.tokenizer.audio_end_id)[0]
|
284 |
+
assert len(audio_start_idx) == len(audio_end_idx)
|
285 |
+
audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)])
|
286 |
+
|
287 |
+
spk_start_idx = torch.where(input_ids == self.tokenizer.spk_start_id)[0]
|
288 |
+
spk_end_idx = torch.where(input_ids == self.tokenizer.spk_end_id)[0]
|
289 |
+
assert len(spk_start_idx) == len(spk_end_idx)
|
290 |
+
spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)])
|
291 |
+
|
292 |
+
return input_ids, image_bounds, audio_bounds, spk_bounds
|
293 |
+
|
294 |
+
def _convert_omni_to_inputs(
|
295 |
+
self,
|
296 |
+
images,
|
297 |
+
audio_phs,
|
298 |
+
texts: Union[str, List[str]],
|
299 |
+
truncation=None,
|
300 |
+
max_length=None,
|
301 |
+
max_slice_nums=None,
|
302 |
+
use_image_id=None,
|
303 |
+
return_tensors=None,
|
304 |
+
**kwargs,
|
305 |
+
):
|
306 |
+
if images is None and audio_phs is None:
|
307 |
+
model_inputs = self.tokenizer(
|
308 |
+
texts, return_tensors=return_tensors, truncation=truncation, max_length=max_length, **kwargs
|
309 |
+
)
|
310 |
+
return MiniCPMOBatchFeature(data={**model_inputs})
|
311 |
+
|
312 |
+
image_tag = "(<image>./</image>)"
|
313 |
+
image_pattern = "\(<image>./</image>\)"
|
314 |
+
audio_tag = "(<audio>./</audio>)"
|
315 |
+
audio_pattern = "\(<audio>./</audio>\)"
|
316 |
+
split_pattern = f"({image_pattern}|{audio_pattern})"
|
317 |
+
|
318 |
+
if isinstance(texts, str):
|
319 |
+
texts = [texts]
|
320 |
+
|
321 |
+
bs = len(texts)
|
322 |
+
if images is not None:
|
323 |
+
images, image_sizes, tgt_sizes = images["pixel_values"], images["image_sizes"], images["tgt_sizes"]
|
324 |
+
else:
|
325 |
+
images, image_sizes, tgt_sizes = [[]] * bs, [[]] * bs, [[]] * bs
|
326 |
+
|
327 |
+
input_ids_list = []
|
328 |
+
image_bounds_list = []
|
329 |
+
audio_bounds_list = []
|
330 |
+
spk_bounds_list = []
|
331 |
+
|
332 |
+
for index, text in enumerate(texts):
|
333 |
+
text_chunks = re.split(split_pattern, text)
|
334 |
+
|
335 |
+
image_tags = re.findall(image_pattern, text)
|
336 |
+
audio_tags = re.findall(audio_pattern, text)
|
337 |
+
|
338 |
+
if image_tags:
|
339 |
+
assert images is not None
|
340 |
+
assert len(image_tags) == len(image_sizes[index])
|
341 |
+
if audio_tags:
|
342 |
+
assert audio_phs is not None
|
343 |
+
assert len(audio_tags) == len(audio_phs[index])
|
344 |
+
|
345 |
+
image_id = 0
|
346 |
+
audio_id = 0
|
347 |
+
for i, chunk in enumerate(text_chunks):
|
348 |
+
if chunk == image_tag:
|
349 |
+
image_placeholder = self.image_processor.get_slice_image_placeholder(
|
350 |
+
image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
|
351 |
+
)
|
352 |
+
image_id += 1
|
353 |
+
text_chunks[i] = image_placeholder
|
354 |
+
elif chunk == audio_tag:
|
355 |
+
audio_placeholder = audio_phs[index][audio_id]
|
356 |
+
audio_id += 1
|
357 |
+
text_chunks[i] = audio_placeholder
|
358 |
+
|
359 |
+
final_text = "".join(text_chunks)
|
360 |
+
input_ids, image_bounds, audio_bounds, spk_bounds = self._convert(final_text, max_length, **kwargs)
|
361 |
+
|
362 |
+
input_ids_list.append(input_ids)
|
363 |
+
image_bounds_list.append(image_bounds)
|
364 |
+
audio_bounds_list.append(audio_bounds)
|
365 |
+
spk_bounds_list.append(spk_bounds)
|
366 |
+
|
367 |
+
padded_input_ids, padding_lengths = self.pad(input_ids_list, padding_side="left")
|
368 |
+
attention_mask = torch.ones_like(padded_input_ids, dtype=torch.bool)
|
369 |
+
for i, length in enumerate(padding_lengths):
|
370 |
+
image_bounds_list[i] = image_bounds_list[i] + length
|
371 |
+
audio_bounds_list[i] = audio_bounds_list[i] + length
|
372 |
+
spk_bounds_list[i] = spk_bounds_list[i] + length
|
373 |
+
attention_mask[i, :length] = False
|
374 |
+
|
375 |
+
data = {
|
376 |
+
"input_ids": padded_input_ids,
|
377 |
+
"attention_mask": attention_mask,
|
378 |
+
"pixel_values": images,
|
379 |
+
"image_sizes": image_sizes,
|
380 |
+
"image_bound": image_bounds_list,
|
381 |
+
"tgt_sizes": tgt_sizes,
|
382 |
+
"audio_bounds": audio_bounds_list,
|
383 |
+
"spk_bounds": spk_bounds_list,
|
384 |
+
}
|
385 |
+
|
386 |
+
return data
|
387 |
+
|
388 |
+
@property
|
389 |
+
# Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
|
390 |
+
def model_input_names(self):
|
391 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
392 |
+
image_processor_input_names = self.image_processor.model_input_names
|
393 |
+
feature_extractor_input_names = self.feature_extractor.model_input_names
|
394 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names + feature_extractor_input_names))
|
395 |
+
|
396 |
+
def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
|
397 |
+
items = []
|
398 |
+
if isinstance(inputs[0], list):
|
399 |
+
assert isinstance(inputs[0][0], torch.Tensor)
|
400 |
+
for it in inputs:
|
401 |
+
for tr in it:
|
402 |
+
items.append(tr)
|
403 |
+
else:
|
404 |
+
assert isinstance(inputs[0], torch.Tensor)
|
405 |
+
items = inputs
|
406 |
+
|
407 |
+
batch_size = len(items)
|
408 |
+
shape = items[0].shape
|
409 |
+
dim = len(shape)
|
410 |
+
assert dim <= 2
|
411 |
+
if max_length is None:
|
412 |
+
max_length = 0
|
413 |
+
max_length = max(max_length, max(item.shape[-1] for item in items))
|
414 |
+
min_length = min(item.shape[-1] for item in items)
|
415 |
+
dtype = items[0].dtype
|
416 |
+
|
417 |
+
if dim == 0:
|
418 |
+
return torch.stack([item for item in items], dim=0), [0]
|
419 |
+
elif dim == 1:
|
420 |
+
if max_length == min_length:
|
421 |
+
return torch.stack([item for item in items], dim=0), [0] * batch_size
|
422 |
+
tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
|
423 |
+
else:
|
424 |
+
tensor = torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype) + padding_value
|
425 |
+
|
426 |
+
padding_length = []
|
427 |
+
for i, item in enumerate(items):
|
428 |
+
if dim == 1:
|
429 |
+
if padding_side == "left":
|
430 |
+
tensor[i, -len(item) :] = item.clone()
|
431 |
+
else:
|
432 |
+
tensor[i, : len(item)] = item.clone()
|
433 |
+
elif dim == 2:
|
434 |
+
if padding_side == "left":
|
435 |
+
tensor[i, -len(item) :, :] = item.clone()
|
436 |
+
else:
|
437 |
+
tensor[i, : len(item), :] = item.clone()
|
438 |
+
padding_length.append(tensor.shape[-1] - len(item))
|
439 |
+
|
440 |
+
return tensor, padding_length
|
441 |
+
|
442 |
+
|
443 |
+
class MelSpectrogramFeatures(torch.nn.Module):
|
444 |
+
def __init__(
|
445 |
+
self,
|
446 |
+
sample_rate=24000,
|
447 |
+
n_fft=1024,
|
448 |
+
hop_length=256,
|
449 |
+
n_mels=100,
|
450 |
+
padding: Literal["center", "same"] = "center",
|
451 |
+
):
|
452 |
+
super().__init__()
|
453 |
+
if padding not in ["center", "same"]:
|
454 |
+
raise ValueError("Padding must be 'center' or 'same'.")
|
455 |
+
self.padding = padding
|
456 |
+
self.mel_spec = torchaudio.transforms.MelSpectrogram(
|
457 |
+
sample_rate=sample_rate,
|
458 |
+
n_fft=n_fft,
|
459 |
+
hop_length=hop_length,
|
460 |
+
n_mels=n_mels,
|
461 |
+
center=padding == "center",
|
462 |
+
power=1,
|
463 |
+
)
|
464 |
+
|
465 |
+
def __call__(self, audio: torch.Tensor) -> torch.Tensor:
|
466 |
+
"""
|
467 |
+
audio: Tensor([num_channels, num_samples])
|
468 |
+
"""
|
469 |
+
return super().__call__(audio)
|
470 |
+
|
471 |
+
def forward(self, audio: torch.Tensor) -> torch.Tensor:
|
472 |
+
"""
|
473 |
+
audio: Tensor([num_channels, num_samples])
|
474 |
+
"""
|
475 |
+
mel: torch.Tensor = self.mel_spec(audio)
|
476 |
+
features = torch.log(torch.clip(mel, min=1e-5))
|
477 |
+
return features
|
478 |
+
|
479 |
+
|
480 |
+
class ChatTTSProcessor:
|
481 |
+
def __init__(self, text_tokenizer):
|
482 |
+
self.audio_processor = MelSpectrogramFeatures()
|
483 |
+
self.text_tokenizer = text_tokenizer
|
484 |
+
|
485 |
+
def __call__(self, text_list, audio_list):
|
486 |
+
assert len(text_list) == len(audio_list)
|
487 |
+
input_ids_varlen = []
|
488 |
+
for text in text_list:
|
489 |
+
input_ids_ = self.text_tokenizer.encode(text, return_tensors="pt", add_special_tokens=False) # [1, seq_len]
|
490 |
+
input_ids_ = input_ids_.squeeze(0) # [seq_len]
|
491 |
+
input_ids_varlen.append(input_ids_)
|
492 |
+
|
493 |
+
audio_features_varlen = []
|
494 |
+
for audio in audio_list:
|
495 |
+
assert audio.shape.__len__() == 1 # [seq_len]
|
496 |
+
try:
|
497 |
+
mel = self.audio_processor(audio) # [100(num_mel_bins), seq_len_mel]
|
498 |
+
except Exception as e:
|
499 |
+
raise e
|
500 |
+
audio_features_varlen.append(mel)
|
501 |
+
|
502 |
+
return {
|
503 |
+
"tts_input_ids_varlen": input_ids_varlen, # return List[Tensor]
|
504 |
+
"tts_input_features_varlen": audio_features_varlen, # return List[Tensor]
|
505 |
+
}
|