File size: 20,829 Bytes
c120e06
 
 
 
 
 
 
 
 
a31f1fd
c120e06
 
 
a31f1fd
c120e06
a31f1fd
 
 
 
c120e06
a31f1fd
 
 
 
c120e06
a31f1fd
 
 
 
c120e06
a31f1fd
 
 
 
c120e06
a31f1fd
 
 
c120e06
 
 
 
 
 
 
 
 
 
 
 
2ca55d2
c120e06
 
 
 
 
 
 
 
 
ccc1d6b
c120e06
 
ccc1d6b
c120e06
 
ccc1d6b
c120e06
 
ccc1d6b
c120e06
 
ccc1d6b
c120e06
 
ccc1d6b
c120e06
 
ccc1d6b
c120e06
 
ccc1d6b
c120e06
 
 
2ca55d2
c120e06
ccc1d6b
a31f1fd
2ca55d2
c120e06
ccc1d6b
 
c120e06
 
a31f1fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c120e06
a31f1fd
c120e06
 
 
 
 
 
 
 
 
 
 
2ca55d2
 
 
a31f1fd
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31f1fd
c120e06
 
 
 
2ca55d2
ccc1d6b
a31f1fd
 
 
 
 
c120e06
a31f1fd
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31f1fd
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31f1fd
 
c120e06
 
 
ccc1d6b
 
 
 
 
 
 
 
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31f1fd
 
 
 
c120e06
 
 
a31f1fd
 
 
 
 
 
 
 
 
 
 
 
c120e06
 
 
 
 
 
 
 
 
 
 
 
a31f1fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c120e06
 
 
 
 
 
 
 
 
a31f1fd
c120e06
 
ccc1d6b
 
 
c120e06
a31f1fd
 
ccc1d6b
c120e06
ccc1d6b
c120e06
 
 
 
a31f1fd
c120e06
 
 
 
ccc1d6b
c120e06
ccc1d6b
 
c120e06
 
 
 
 
a31f1fd
 
c120e06
 
 
 
ccc1d6b
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc1d6b
 
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31f1fd
c120e06
 
 
 
 
 
 
a31f1fd
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a31f1fd
ccc1d6b
 
 
 
 
 
 
 
 
 
 
 
 
 
c120e06
 
a31f1fd
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
a31f1fd
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
a31f1fd
c120e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:2130621
- loss:ContrastiveLoss
base_model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
widget:
- source_sentence: Kim Chol-sam
  sentences:
  - Stankevich Sergey Nikolayevich
  - Kim Chin-So’k
  - Julen Lopetegui Agote
- source_sentence: دينا بنت عبد الحميد
  sentences:
  - Alexia van Amsberg
  - Anthony Nicholas Colin Maitland Biddulph, 5th Baron Biddulph
  - Dina bint Abdul-Hamíd
- source_sentence: Մուհամեդ բեն Նաիֆ Ալ Սաուդ
  sentences:
  - Karpov Anatoly Evgenyevich
  - GNPower Mariveles Coal Plant [former]
  - Muhammed bin Nayef bin Abdul Aziz Al Saud
- source_sentence: Edward Gnehm
  sentences:
  - Шауэрте, Хартмут
  - Ханзада Филипп, Эдинбург герцогі
  - AFX
- source_sentence: Schori i Lidingö
  sentences:
  - Yordan Canev
  - ကားပေါ့ အန်နာတိုလီ
  - BYSTROV, Mikhail Ivanovich
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- cosine_mcc
model-index:
- name: Graphlet-AI/eridu
  results:
  - task:
      type: binary-classification
      name: Binary Classification
    dataset:
      name: sentence transformers paraphrase multilingual MiniLM L12 v2
      type: sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2
    metrics:
    - type: cosine_accuracy
      value: 0.9885216725241056
      name: Cosine Accuracy
    - type: cosine_accuracy_threshold
      value: 0.7183246612548828
      name: Cosine Accuracy Threshold
    - type: cosine_f1
      value: 0.9824706124974221
      name: Cosine F1
    - type: cosine_f1_threshold
      value: 0.7085607051849365
      name: Cosine F1 Threshold
    - type: cosine_precision
      value: 0.9782229269572558
      name: Cosine Precision
    - type: cosine_recall
      value: 0.9867553479166427
      name: Cosine Recall
    - type: cosine_ap
      value: 0.9971022799526896
      name: Cosine Ap
    - type: cosine_mcc
      value: 0.9739458779668466
      name: Cosine Mcc
---

# Graphlet-AI/eridu

Deep fuzzy matching people and company names for multilingual entity resolution using representation learning... that incorporates a deep understanding of people and company names and can work _much better_ than string distance methods!

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) for person and company name matching using the [Open Sanctions matcher training data](https://www.opensanctions.org/docs/pairs/). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used as part of a deep, fuzzy entity resolution process.

NOTE: this model is a work in progress. It is not yet ready for production use!

## Model Details

### TLDR: 5 Lines of Code

```python
from sentence_transformers import SentenceTransformer


# Download from the 🤗 Hub
model = SentenceTransformer("Graphlet-AI/eridu")

names = [
    "Russell Jurney",
    "Russ Jurney",
    "Русс Джерни",
]

embeddings = model.encode(names)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

print(similarities.numpy())
# [[0.9999999  0.99406826 0.99406105]
#  [0.9940683  1.         0.9969202 ]
#  [0.99406105 0.9969202  1.        ]]
```

### Project Eridu Overview

This project is a deep fuzzy matching system for person and company names for entity resolution using representation learning. It is designed to match people and company names across languages and character sets, using a pre-trained text embedding model from HuggingFace that we fine-tune using contrastive learning on 2 million labeled pairs of person and company names from the [Open Sanctions Matcher training data](https://www.opensanctions.org/docs/pairs/). The project includes a command-line interface (CLI) utility for training the model and comparing pairs of names using cosine similarity.

Matching people and company names is an intractable problem using traditional parsing based methods: there is too much variation across cultures and jurisdictions to solve the problem by humans programming. This results in complex, cost prohibitive enterprise solutions for name matching like [IBM InfoSphere Global Name Management](https://www.ibm.com/products/ibm-infosphere-global-name-management). Machine learning is used on problems like this one of cultural relevance, where the time to manually programming a solution appproaches infinity, to automatically write a program. Since 2008 there has been an explosion of deep learning methods that automate feature engineering via representation learning methods including such as text embeddings.

This project loads the pre-trained [paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) paraphrase model from HuggingFace and fine-tunes it for the name matching task using contrastive learning on more than 2 million labeled pairs of matching and non-matching (just as important) person and company names from the [Open Sanctions Matcher training data](https://www.opensanctions.org/docs/pairs/) to create a deep fuzzy matching system for entity resolution.

This model is available on HuggingFace Hub as [Graphlet-AI/eridu](https://huggingface.co/Graphlet-AI/eridu) and can be used in any Python project using the [Sentence Transformers](https://sbert.net/) library in five lines of code. The model is designed to be used for entity resolution tasks, such as matching people and company names across different languages and character sets when matching records.

### Model Description

- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) <!-- at revision 86741b4e3f5cb7765a600d3a3d55a0f6a6cb443d -->
- **Maximum Sequence Length:** 128 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Graphlet-AI/eridu Documentation](https://github.com/Graphlet-AI/eridu)
- **Repository:** [Graphlet-AI/eridu on GitHub](https://github.com/Graphlet-AI/eridu)
- **Hugging Face:** [Graphlet-AI/eridu on Hugging Face](https://huggingface.co/Graphlet-AI/eridu)
- **PyPi Package:** [Graphlet-AI/eridu on PyPi](https://pypi.org/project/eridu/)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.

```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Graphlet-AI/eridu")

# Run inference
sentences = [
    'Schori i Lidingö',
    'Yordan Canev',
    'ကားပေါ့ အန်နာတိုလီ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Binary Classification

- Dataset: `sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2`
- Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)

| Metric                    | Value      |
|:--------------------------|:-----------|
| cosine_accuracy           | 0.9885     |
| cosine_accuracy_threshold | 0.7183     |
| cosine_f1                 | 0.9825     |
| cosine_f1_threshold       | 0.7086     |
| cosine_precision          | 0.9782     |
| cosine_recall             | 0.9868     |
| **cosine_ap**             | **0.9971** |
| cosine_mcc                | 0.9739     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset

- Size: 2,130,621 training samples
- Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
- Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                        | sentence2                                                                        | label                                                          |
  |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                           | string                                                                           | float                                                          |
  | details | <ul><li>min: 3 tokens</li><li>mean: 9.32 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.16 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.34</li><li>max: 1.0</li></ul> |

- Samples:

  | sentence1                         | sentence2                           | label            |
  |:----------------------------------|:------------------------------------|:-----------------|
  | <code>캐스린 설리번</code>              | <code>Kathryn D. Sullivanová</code> | <code>1.0</code> |
  | <code>ଶିବରାଜ ଅଧାଲରାଓ ପାଟିଲ</code> | <code>Aleksander Lubocki</code>     | <code>0.0</code> |
  | <code>Пырванов, Георги</code>     | <code>アナトーリー・セルジュコフ</code>          | <code>0.0</code> |

- Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:

  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Evaluation Dataset

#### Unnamed Dataset

- Size: 2,663,276 evaluation samples
- Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
- Approximate statistics based on the first 1000 samples:

  |         | sentence1                                                                         | sentence2                                                                         | label                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | float                                                          |
  | details | <ul><li>min: 3 tokens</li><li>mean: 9.34 tokens</li><li>max: 102 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 9.11 tokens</li><li>max: 100 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |

- Samples:

  | sentence1                             | sentence2                              | label            |
  |:--------------------------------------|:---------------------------------------|:-----------------|
  | <code>Ева Херман</code>               | <code>I Xuan Karlos</code>             | <code>0.0</code> |
  | <code>Кличков Андрій Євгенович</code> | <code>Андрэй Яўгенавіч Клычкоў</code>  | <code>1.0</code> |
  | <code>Кинах А.</code>                 | <code>Senator John Hickenlooper</code> | <code>0.0</code> |

- Loss: [<code>ContrastiveLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#contrastiveloss) with these parameters:

  ```json
  {
      "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
      "margin": 0.5,
      "size_average": true
  }
  ```

### Training Hyperparameters

#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 768
- `per_device_eval_batch_size`: 768
- `gradient_accumulation_steps`: 4
- `learning_rate`: 3e-05
- `weight_decay`: 0.01
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adafactor

#### All Hyperparameters

<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 768
- `per_device_eval_batch_size`: 768
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 4
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.01
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `tp_size`: 0
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adafactor
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs

| Epoch      | Step     | Training Loss | Validation Loss | sentence-transformers-paraphrase-multilingual-MiniLM-L12-v2_cosine_ap |
|:----------:|:--------:|:-------------:|:---------------:|:---------------------------------------------------------------------:|
| -1         | -1       | -             | -               | 0.7140                                                                |
| 0.7207     | 500      | 0.038         | -               | -                                                                     |
| 0.9989     | 693      | -             | 0.0028          | 0.9911                                                                |
| 1.4425     | 1000     | 0.0128        | -               | -                                                                     |
| 1.9989     | 1386     | -             | 0.0021          | 0.9956                                                                |
| 2.1643     | 1500     | 0.0084        | -               | -                                                                     |
| 2.8850     | 2000     | 0.0065        | -               | -                                                                     |
| 2.9989     | 2079     | -             | 0.0015          | 0.9968                                                                |
| 3.6068     | 2500     | 0.0056        | -               | -                                                                     |
| **3.9989** | **2772** | **-**         | **0.0014**      | **0.9971**                                                            |

- The bold row denotes the saved checkpoint.

### Framework Versions

- Python: 3.12.9
- Sentence Transformers: 3.4.1
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1

## Citation

### BibTeX

#### Sentence Transformers

```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### ContrastiveLoss

```bibtex
@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)},
    title={Dimensionality Reduction by Learning an Invariant Mapping},
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->