email-summarization-mt5-lora

This model is a fine-tuned version of facebook/bart-large-cnn on Gliscor/email-summaries-tr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9852
  • Rouge1: 0.4139
  • Rouge2: 0.2289
  • Rougel: 0.3470
  • Meteor: 0.3850

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Meteor
1.3724 0.4444 1000 1.2582 0.3767 0.1882 0.3024 0.3463
1.2355 0.8889 2000 1.1349 0.3863 0.2006 0.3184 0.3568
1.091 1.3333 3000 1.0663 0.3848 0.2038 0.3182 0.3473
1.0423 1.7778 4000 1.0290 0.3989 0.2129 0.3332 0.3688
0.932 2.2222 5000 1.0098 0.3972 0.2167 0.3291 0.3611
1.0104 2.6667 6000 0.9852 0.4139 0.2289 0.3470 0.3850

Framework versions

  • PEFT 0.17.0
  • Transformers 4.55.1
  • Pytorch 2.6.0+cu124
  • Datasets 4.0.0
  • Tokenizers 0.21.4
Downloads last month
14
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Gliscor/email-summarizer-bart-large-cnn-tr

Adapter
(26)
this model

Dataset used to train Gliscor/email-summarizer-bart-large-cnn-tr