email-summarization-mt5-lora
This model is a fine-tuned version of facebook/bart-large-cnn on Gliscor/email-summaries-tr dataset. It achieves the following results on the evaluation set:
- Loss: 0.9852
- Rouge1: 0.4139
- Rouge2: 0.2289
- Rougel: 0.3470
- Meteor: 0.3850
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Meteor |
---|---|---|---|---|---|---|---|
1.3724 | 0.4444 | 1000 | 1.2582 | 0.3767 | 0.1882 | 0.3024 | 0.3463 |
1.2355 | 0.8889 | 2000 | 1.1349 | 0.3863 | 0.2006 | 0.3184 | 0.3568 |
1.091 | 1.3333 | 3000 | 1.0663 | 0.3848 | 0.2038 | 0.3182 | 0.3473 |
1.0423 | 1.7778 | 4000 | 1.0290 | 0.3989 | 0.2129 | 0.3332 | 0.3688 |
0.932 | 2.2222 | 5000 | 1.0098 | 0.3972 | 0.2167 | 0.3291 | 0.3611 |
1.0104 | 2.6667 | 6000 | 0.9852 | 0.4139 | 0.2289 | 0.3470 | 0.3850 |
Framework versions
- PEFT 0.17.0
- Transformers 4.55.1
- Pytorch 2.6.0+cu124
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 14
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for Gliscor/email-summarizer-bart-large-cnn-tr
Base model
facebook/bart-large-cnn