metadata
license: apache-2.0
tags:
- generated_from_trainer
base_model: albert/albert-base-v2
metrics:
- accuracy
- f1
- precision
- recall
model-index:
- name: modelsent_test
results: []
modelsent_test
This model is a fine-tuned version of albert/albert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2510
- Accuracy: 0.9261
- F1: 0.9261
- Precision: 0.9261
- Recall: 0.9261
- Accuracy Label Negative: 0.9255
- Accuracy Label Positive: 0.9266
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | Accuracy Label Negative | Accuracy Label Positive |
|---|---|---|---|---|---|---|---|---|---|
| 0.5848 | 0.2442 | 100 | 0.5668 | 0.7783 | 0.7774 | 0.7869 | 0.7783 | 0.8548 | 0.7065 |
| 0.2761 | 0.4884 | 200 | 0.2858 | 0.8913 | 0.8912 | 0.8944 | 0.8913 | 0.9318 | 0.8533 |
| 0.2099 | 0.7326 | 300 | 0.2412 | 0.9114 | 0.9114 | 0.9116 | 0.9114 | 0.8965 | 0.9254 |
| 0.2717 | 0.9768 | 400 | 0.2532 | 0.9133 | 0.9133 | 0.9141 | 0.9133 | 0.9318 | 0.8959 |
| 0.2076 | 1.2210 | 500 | 0.2588 | 0.9084 | 0.9083 | 0.9111 | 0.9084 | 0.9457 | 0.8734 |
| 0.1745 | 1.4652 | 600 | 0.2217 | 0.9133 | 0.9132 | 0.9133 | 0.9133 | 0.9028 | 0.9231 |
| 0.21 | 1.7094 | 700 | 0.2161 | 0.9157 | 0.9157 | 0.9157 | 0.9157 | 0.9078 | 0.9231 |
| 0.1349 | 1.9536 | 800 | 0.2092 | 0.9243 | 0.9242 | 0.9245 | 0.9243 | 0.9078 | 0.9396 |
| 0.1795 | 2.1978 | 900 | 0.2492 | 0.9175 | 0.9175 | 0.9189 | 0.9175 | 0.9432 | 0.8935 |
| 0.107 | 2.4420 | 1000 | 0.2743 | 0.9120 | 0.9120 | 0.9163 | 0.9120 | 0.9596 | 0.8675 |
| 0.08 | 2.6862 | 1100 | 0.2606 | 0.9188 | 0.9188 | 0.9200 | 0.9188 | 0.9432 | 0.8959 |
| 0.1275 | 2.9304 | 1200 | 0.2550 | 0.9255 | 0.9255 | 0.9255 | 0.9255 | 0.9167 | 0.9337 |
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1