See axolotl config
axolotl version: 0.12.1
base_model: openai/gpt-oss-20b
use_kernels: true
model_quantization_config: Mxfp4Config
model_quantization_config_kwargs:
dequantize: true
plugins:
- axolotl.integrations.cut_cross_entropy.CutCrossEntropyPlugin
experimental_skip_move_to_device: true # prevent OOM by not putting model to GPU before sharding
datasets:
- path: /workspace/swe-tests/scripts/1_low_stakes_control/sft/aquarat_sft_gt_train_stylized.jsonl
type: chat_template
ds_type: json
field_thinking: thinking
template_thinking_key: thinking
# step 2
field_messages: messages
message_property_mappings:
role: role
content: content
# step 3
roles_to_train: ["assistant"]
train_on_eos: "turn"
test_datasets:
- path: /workspace/swe-tests/scripts/1_low_stakes_control/sft/aquarat_sft_gt_val_stylized.jsonl
type: chat_template
ds_type: json
field_thinking: thinking
template_thinking_key: thinking
# step 2
field_messages: messages
message_property_mappings:
role: role
content: content
split: train
output_dir: ./outputs/out/gpt-oss-20b-aquarat-ground-truth
sequence_len: 4096
#sample_packing: true
adapter: lora
lora_r: 32
lora_alpha: 32
lora_dropout: 0.0 # dropout not supported when using LoRA over expert parameters
lora_target_linear: true
# TODO: not supported for now, see peft#2710
#lora_target_parameters: # target the experts in the last two layers
# - "22._checkpoint_wrapped_module.mlp.experts.gate_up_proj"
# - "22._checkpoint_wrapped_module.mlp.experts.down_proj"
# - "23._checkpoint_wrapped_module.mlp.experts.gate_up_proj"
# - "23._checkpoint_wrapped_module.mlp.experts.down_proj"
wandb_project: low-stakes-control-sft
wandb_entity: mats-low-stakes
wandb_name: gpt-oss-20b-aquarat-ground-truth
wandb_log_model: checkpoint
hub_model_id: EmilRyd/gpt-oss-20b-aquarat-ground-truth
gradient_accumulation_steps: 8
micro_batch_size: 4
num_epochs: 3
optimizer: adamw_torch_8bit
lr_scheduler: constant_with_warmup
learning_rate: 1e-4
bf16: true
tf32: true
flash_attention: true
attn_implementation: kernels-community/vllm-flash-attn3
gradient_checkpointing: true
activation_offloading: true
logging_steps: 1
save_steps: 2
save_only_model: true
warmup_ratio: 0.1
eval_steps: 5
special_tokens:
eot_tokens:
- "<|end|>"
gpt-oss-20b-aquarat-ground-truth
This model is a fine-tuned version of openai/gpt-oss-20b on an unknown dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Use adamw_torch_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 9
- training_steps: 93
Framework versions
- PEFT 0.17.0
- Transformers 4.55.0
- Pytorch 2.6.0+cu126
- Datasets 4.0.0
- Tokenizers 0.21.4
- Downloads last month
- 52
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for EmilRyd/gpt-oss-20b-aquarat-ground-truth
Base model
openai/gpt-oss-20b