ivkalgin's picture
updated README.md (added latency table)
2db91ae
|
raw
history blame
1.72 kB
---
license: apache-2.0
datasets:
- lambada
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- text-generation-inference
- causal-lm
- int8
- tensorrt
- ENOT-AutoDL
---
# INT8 GPT-J 6B
GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters.
This repository contains TensorRT engines with mixed precission int8 + fp32. You can find prebuilt engines for the following GPUs:
* RTX 4090
* RTX 3080 Ti
* RTX 2080 Ti
ONNX model generated by [ENOT-AutoDL](https://pypi.org/project/enot-autodl/) and build script will be published soon.
## Metrics:
| |TensorRT INT8+FP32|torch FP16|torch FP32|
|---|:---:|:---:|:---:|
| **Lambada Acc** |78.79%|79.17%|-|
| **Model size (GB)** |8.5|12.1|24.2|
### Test environment
* GPU RTX 4090
* CPU 11th Gen Intel(R) Core(TM) i7-11700K
* TensorRT 8.5.3.1
* pytorch 1.13.1+cu116
## Latency:
|Input sequance length|Number of generated tokens|TensorRT INT8+FP32 ms|torch FP16 ms|Acceleration|
|:---:|:---:|:---:|:---:|:---:|
|64|64|1040|1610|1.55|
|64|128|2089|3224|1.54|
|64|256|4236|6479|1.53|
|128|64|1060|1619|1.53|
|128|128|2120|3241|1.53|
|128|256|4296|6510|1.52|
|256|64|1109|1640|1.49|
|256|128|2204|3276|1.49|
|256|256|4443|6571|1.49|
### Test environment
* GPU RTX 4090
* CPU 11th Gen Intel(R) Core(TM) i7-11700K
* TensorRT 8.5.3.1
* pytorch 1.13.1+cu116
## How to use
Example of inference and accuracy test [published on github](https://github.com/ENOT-AutoDL/gpt-j-6B-tensorrt-int8):
```shell
git clone https://github.com/ENOT-AutoDL/gpt-j-6B-tensorrt-int8
```