license: apache-2.0 | |
datasets: | |
- lambada | |
language: | |
- en | |
library_name: transformers | |
pipeline_tag: text-generation | |
tags: | |
- text-generation-inference | |
- causal-lm | |
- int8 | |
- tensorrt | |
- ENOT-AutoDL | |
# INT8 GPT-J 6B | |
GPT-J 6B is a transformer model trained using Ben Wang's [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax/). "GPT-J" refers to the class of model, while "6B" represents the number of trainable parameters. | |
This repository contains TensorRT engines with mixed precission int8 + fp32. You can find prebuilt engines for the following GPUs: | |
* RTX 4090 | |
* RTX 3080 Ti | |
* RTX 2080 Ti | |
ONNX model generated by [ENOT-AutoDL](https://pypi.org/project/enot-autodl/) and build script will be published soon. | |
## Metrics: | |
| |TensorRT INT8+FP32|torch FP16|torch FP32| | |
|---|:---:|:---:|:---:| | |
| **Lambada Acc** |78.79%|79.17%|-| | |
| **Model size (GB)** |8.5|12.1|24.2| | |
### Test environment | |
* GPU RTX 4090 | |
* CPU 11th Gen Intel(R) Core(TM) i7-11700K | |
* TensorRT 8.5.3.1 | |
* pytorch 1.13.1+cu116 | |
## Latency: | |
|Input sequance length|Number of generated tokens|TensorRT INT8+FP32 ms|torch FP16 ms|Acceleration| | |
|:---:|:---:|:---:|:---:|:---:| | |
|64|64|1040|1610|1.55| | |
|64|128|2089|3224|1.54| | |
|64|256|4236|6479|1.53| | |
|128|64|1060|1619|1.53| | |
|128|128|2120|3241|1.53| | |
|128|256|4296|6510|1.52| | |
|256|64|1109|1640|1.49| | |
|256|128|2204|3276|1.49| | |
|256|256|4443|6571|1.49| | |
### Test environment | |
* GPU RTX 4090 | |
* CPU 11th Gen Intel(R) Core(TM) i7-11700K | |
* TensorRT 8.5.3.1 | |
* pytorch 1.13.1+cu116 | |
## How to use | |
Example of inference and accuracy test [published on github](https://github.com/ENOT-AutoDL/gpt-j-6B-tensorrt-int8): | |
```shell | |
git clone https://github.com/ENOT-AutoDL/gpt-j-6B-tensorrt-int8 | |
``` | |