File size: 1,769 Bytes
2a7e8e8
 
 
 
 
 
 
 
 
 
 
 
 
7076d2e
 
2a7e8e8
38d2e45
5457689
b62e75e
122bcbf
b62e75e
 
82a36b9
2a7e8e8
 
b62e75e
7762f07
b62e75e
7762f07
b62e75e
7762f07
b62e75e
7762f07
b62e75e
7762f07
25373ed
2a7e8e8
 
 
 
 
 
 
 
 
 
 
 
 
 
ac0ee23
 
b62e75e
 
 
 
 
2a7e8e8
 
 
 
b35fc4c
b62e75e
e244c56
b62e75e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vulnerability-severity-classification-roberta-base

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1088
- Accuracy: 0.4592

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 1.2002        | 1.0   | 27520  | 1.1105          | 0.4592   |
| 1.0249        | 2.0   | 55040  | 1.1088          | 0.4592   |
| 1.1372        | 3.0   | 82560  | 1.1086          | 0.4592   |
| 1.0043        | 4.0   | 110080 | 1.1090          | 0.4592   |
| 1.0767        | 5.0   | 137600 | 1.1088          | 0.4592   |


### Framework versions

- Transformers 4.51.3
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1