End of training
Browse files- README.md +15 -38
- emissions.csv +1 -1
- model.safetensors +1 -1
    	
        README.md
    CHANGED
    
    | @@ -9,8 +9,6 @@ metrics: | |
| 9 | 
             
            model-index:
         | 
| 10 | 
             
            - name: vulnerability-severity-classification-roberta-base
         | 
| 11 | 
             
              results: []
         | 
| 12 | 
            -
            datasets:
         | 
| 13 | 
            -
            - CIRCL/vulnerability-scores
         | 
| 14 | 
             
            ---
         | 
| 15 |  | 
| 16 | 
             
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         | 
| @@ -18,45 +16,24 @@ should probably proofread and complete it, then remove this comment. --> | |
| 18 |  | 
| 19 | 
             
            # vulnerability-severity-classification-roberta-base
         | 
| 20 |  | 
| 21 | 
            -
            This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on  | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
             
            It achieves the following results on the evaluation set:
         | 
| 25 | 
            -
            - Loss: 0. | 
| 26 | 
            -
            - Accuracy: 0. | 
| 27 |  | 
| 28 | 
             
            ## Model description
         | 
| 29 |  | 
| 30 | 
            -
             | 
| 31 | 
            -
             | 
| 32 | 
            -
             | 
| 33 | 
            -
            ## How to get started with the model
         | 
| 34 | 
            -
             | 
| 35 | 
            -
            ```python
         | 
| 36 | 
            -
            from transformers import AutoModelForSequenceClassification, AutoTokenizer
         | 
| 37 | 
            -
            import torch
         | 
| 38 |  | 
| 39 | 
            -
             | 
| 40 |  | 
| 41 | 
            -
             | 
| 42 | 
            -
            tokenizer = AutoTokenizer.from_pretrained(model_name)
         | 
| 43 | 
            -
            model = AutoModelForSequenceClassification.from_pretrained(model_name)
         | 
| 44 | 
            -
            model.eval()
         | 
| 45 |  | 
| 46 | 
            -
             | 
| 47 | 
            -
            that could severely harm the host system. This could significantly affect the confidentiality, integrity, and availability of the targeted system."
         | 
| 48 | 
            -
            inputs = tokenizer(test_description, return_tensors="pt", truncation=True, padding=True)
         | 
| 49 |  | 
| 50 | 
            -
             | 
| 51 | 
            -
            with torch.no_grad():
         | 
| 52 | 
            -
                outputs = model(**inputs)
         | 
| 53 | 
            -
                predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
         | 
| 54 |  | 
| 55 | 
            -
             | 
| 56 | 
            -
            print("Predictions:", predictions)
         | 
| 57 | 
            -
            predicted_class = torch.argmax(predictions, dim=-1).item()
         | 
| 58 | 
            -
            print("Predicted severity:", labels[predicted_class])
         | 
| 59 | 
            -
            ```
         | 
| 60 |  | 
| 61 | 
             
            ### Training hyperparameters
         | 
| 62 |  | 
| @@ -73,11 +50,11 @@ The following hyperparameters were used during training: | |
| 73 |  | 
| 74 | 
             
            | Training Loss | Epoch | Step   | Validation Loss | Accuracy |
         | 
| 75 | 
             
            |:-------------:|:-----:|:------:|:---------------:|:--------:|
         | 
| 76 | 
            -
            | 0. | 
| 77 | 
            -
            | 0. | 
| 78 | 
            -
            | 0. | 
| 79 | 
            -
            | 0. | 
| 80 | 
            -
            | 0. | 
| 81 |  | 
| 82 |  | 
| 83 | 
             
            ### Framework versions
         | 
| @@ -85,4 +62,4 @@ The following hyperparameters were used during training: | |
| 85 | 
             
            - Transformers 4.51.3
         | 
| 86 | 
             
            - Pytorch 2.7.0+cu126
         | 
| 87 | 
             
            - Datasets 3.6.0
         | 
| 88 | 
            -
            - Tokenizers 0.21.1
         | 
|  | |
| 9 | 
             
            model-index:
         | 
| 10 | 
             
            - name: vulnerability-severity-classification-roberta-base
         | 
| 11 | 
             
              results: []
         | 
|  | |
|  | |
| 12 | 
             
            ---
         | 
| 13 |  | 
| 14 | 
             
            <!-- This model card has been generated automatically according to the information the Trainer had access to. You
         | 
|  | |
| 16 |  | 
| 17 | 
             
            # vulnerability-severity-classification-roberta-base
         | 
| 18 |  | 
| 19 | 
            +
            This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
         | 
|  | |
|  | |
| 20 | 
             
            It achieves the following results on the evaluation set:
         | 
| 21 | 
            +
            - Loss: 0.5068
         | 
| 22 | 
            +
            - Accuracy: 0.8288
         | 
| 23 |  | 
| 24 | 
             
            ## Model description
         | 
| 25 |  | 
| 26 | 
            +
            More information needed
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 27 |  | 
| 28 | 
            +
            ## Intended uses & limitations
         | 
| 29 |  | 
| 30 | 
            +
            More information needed
         | 
|  | |
|  | |
|  | |
| 31 |  | 
| 32 | 
            +
            ## Training and evaluation data
         | 
|  | |
|  | |
| 33 |  | 
| 34 | 
            +
            More information needed
         | 
|  | |
|  | |
|  | |
| 35 |  | 
| 36 | 
            +
            ## Training procedure
         | 
|  | |
|  | |
|  | |
|  | |
| 37 |  | 
| 38 | 
             
            ### Training hyperparameters
         | 
| 39 |  | 
|  | |
| 50 |  | 
| 51 | 
             
            | Training Loss | Epoch | Step   | Validation Loss | Accuracy |
         | 
| 52 | 
             
            |:-------------:|:-----:|:------:|:---------------:|:--------:|
         | 
| 53 | 
            +
            | 0.7177        | 1.0   | 27141  | 0.6449          | 0.7401   |
         | 
| 54 | 
            +
            | 0.449         | 2.0   | 54282  | 0.5911          | 0.7727   |
         | 
| 55 | 
            +
            | 0.4575        | 3.0   | 81423  | 0.5174          | 0.8015   |
         | 
| 56 | 
            +
            | 0.4397        | 4.0   | 108564 | 0.4977          | 0.8193   |
         | 
| 57 | 
            +
            | 0.3868        | 5.0   | 135705 | 0.5068          | 0.8288   |
         | 
| 58 |  | 
| 59 |  | 
| 60 | 
             
            ### Framework versions
         | 
|  | |
| 62 | 
             
            - Transformers 4.51.3
         | 
| 63 | 
             
            - Pytorch 2.7.0+cu126
         | 
| 64 | 
             
            - Datasets 3.6.0
         | 
| 65 | 
            +
            - Tokenizers 0.21.1
         | 
    	
        emissions.csv
    CHANGED
    
    | @@ -1,2 +1,2 @@ | |
| 1 | 
             
            timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
         | 
| 2 | 
            -
            2025-05- | 
|  | |
| 1 | 
             
            timestamp,project_name,run_id,experiment_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
         | 
| 2 | 
            +
            2025-05-19T14:31:46,codecarbon,b0549cdd-487c-4c25-aced-7547e421e1c7,5b0fa12a-3dd7-45bb-9766-cc326314d9f1,30200.185689591046,0.5953149219658064,1.9712293430400685e-05,42.5,183.42897859440293,94.34468364715576,0.3562902715484039,4.508317828318042,0.7908921420590646,5.655500241925523,Luxembourg,LUX,luxembourg,,,Linux-6.8.0-60-generic-x86_64-with-glibc2.39,3.12.3,2.8.4,64,AMD EPYC 9124 16-Core Processor,2,2 x NVIDIA L40S,6.1294,49.6113,251.58582305908203,machine,N,1.0
         | 
    	
        model.safetensors
    CHANGED
    
    | @@ -1,3 +1,3 @@ | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            -
            oid sha256: | 
| 3 | 
             
            size 498618976
         | 
|  | |
| 1 | 
             
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c9d79bbe2bf2afe98192880aeb68050576c5e37de34265ddfae9feef4ff95ac1
         | 
| 3 | 
             
            size 498618976
         | 

