File size: 1,769 Bytes
2a7e8e8 7076d2e 2a7e8e8 a0837d7 3e7f638 a0837d7 6c95032 a0837d7 82a36b9 a0837d7 2a7e8e8 a0837d7 7762f07 a0837d7 7762f07 a0837d7 7762f07 a0837d7 7762f07 a0837d7 7762f07 25373ed 2a7e8e8 ac0ee23 a0837d7 2a7e8e8 b35fc4c b62e75e e244c56 5b69448 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vulnerability-severity-classification-roberta-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5065
- Accuracy: 0.8293
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.5365 | 1.0 | 28319 | 0.6723 | 0.7432 |
| 0.4935 | 2.0 | 56638 | 0.5961 | 0.7707 |
| 0.4246 | 3.0 | 84957 | 0.5398 | 0.7981 |
| 0.4927 | 4.0 | 113276 | 0.5052 | 0.8193 |
| 0.2864 | 5.0 | 141595 | 0.5065 | 0.8293 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.7.1+cu126
- Datasets 3.6.0
- Tokenizers 0.21.1
|