Text Classification
Transformers
Safetensors
roberta
Generated from Trainer
File size: 1,775 Bytes
2a7e8e8
 
84a87fd
2a7e8e8
 
 
 
 
 
 
 
 
 
84a87fd
 
2a7e8e8
84a87fd
3e7f638
84a87fd
 
 
 
c43ab1f
ab225d6
2a7e8e8
ab225d6
7762f07
84a87fd
7762f07
84a87fd
1809d88
84a87fd
1809d88
84a87fd
7762f07
25373ed
2a7e8e8
 
 
 
 
 
 
 
ab225d6
2a7e8e8
 
 
 
 
ac0ee23
 
84a87fd
 
 
 
 
2a7e8e8
 
 
 
ab225d6
 
 
84a87fd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vulnerability-severity-classification-roberta-base

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5055
- Accuracy: 0.8292

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.7509        | 1.0   | 28516  | 0.6343          | 0.7430   |
| 0.4746        | 2.0   | 57032  | 0.5834          | 0.7715   |
| 0.507         | 3.0   | 85548  | 0.5317          | 0.7974   |
| 0.3822        | 4.0   | 114064 | 0.5055          | 0.8171   |
| 0.3155        | 5.0   | 142580 | 0.5055          | 0.8292   |


### Framework versions

- Transformers 4.55.2
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4