File size: 1,775 Bytes
2a7e8e8 84a87fd 2a7e8e8 84a87fd 2a7e8e8 84a87fd 3e7f638 84a87fd c43ab1f ab225d6 2a7e8e8 ab225d6 7762f07 84a87fd 7762f07 84a87fd 1809d88 84a87fd 1809d88 84a87fd 7762f07 25373ed 2a7e8e8 ab225d6 2a7e8e8 ac0ee23 84a87fd 2a7e8e8 ab225d6 84a87fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: transformers
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: vulnerability-severity-classification-roberta-base
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vulnerability-severity-classification-roberta-base
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5055
- Accuracy: 0.8292
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 0.7509 | 1.0 | 28516 | 0.6343 | 0.7430 |
| 0.4746 | 2.0 | 57032 | 0.5834 | 0.7715 |
| 0.507 | 3.0 | 85548 | 0.5317 | 0.7974 |
| 0.3822 | 4.0 | 114064 | 0.5055 | 0.8171 |
| 0.3155 | 5.0 | 142580 | 0.5055 | 0.8292 |
### Framework versions
- Transformers 4.55.2
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.21.4
|