|
--- |
|
license: mit |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
--- |
|
|
|
# Seed-Coder-8B-Base |
|
|
|
<div align="left" style="line-height: 1;"> |
|
<a href="https://bytedance-seed-coder.github.io/" target="_blank" style="margin: 2px;"> |
|
<img alt="Homepage" src="https://img.shields.io/badge/Seed--Coder-Homepage-a468fe?color=a468fe&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
|
|
<a href="https://github.com/ByteDance-Seed/Seed-Coder/blob/master/Seed-Coder.pdf" target="_blank" style="margin: 2px;"> |
|
<img alt="Technical Report" src="https://img.shields.io/badge/(upcoming)-Technical%20Report-brightgreen?logo=arxiv&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
|
|
<a href="https://huggingface.co/ByteDance-Seed" target="_blank" style="margin: 2px;"> |
|
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-ByteDance%20Seed-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
|
|
<a href="https://github.com/ByteDance-Seed/Seed-Coder/blob/master/LICENSE" style="margin: 2px;"> |
|
<img alt="License" src="https://img.shields.io/badge/License-MIT-f5de53?color=f5de53&logoColor=white" style="display: inline-block; vertical-align: middle;"/> |
|
</a> |
|
</div> |
|
|
|
|
|
## Introduction |
|
We are thrilled to introduce Seed-Coder, a powerful, transparent, and parameter-efficient family of open-source code models at the 8B scale, featuring base, instruct, and reasoning variants. Seed-Coder contributes to promote the evolution of open code models through the following highlights. |
|
|
|
- **Model-centric:** Seed-Coder predominantly leverages LLMs instead of hand-crafted rules for code data filtering, minimizing manual effort in pretraining data construction. |
|
- **Transparent:** We openly share detailed insights into our model-centric data pipeline, including methods for curating GitHub data, commits data, and code-related web data. |
|
- **Powerful:** Seed-Coder achieves state-of-the-art performance among open-source models of comparable size across a diverse range of coding tasks. |
|
|
|
<p align="center"> |
|
<img width="100%" src="imgs/seed-coder_intro_performance.jpg"> |
|
</p> |
|
|
|
This repo contains the **Seed-Coder-8B-Base** model, with the following features: |
|
- Type: Causal language models |
|
- Training Stage: Pretraining |
|
- Data Source: GitHub data, code-related web data |
|
- Training Tokens: 6 trillion |
|
- Supports: Code completion, code infilling (Fill-in-the-Middle) |
|
- Context Length: 32,768 |
|
|
|
|
|
## Model Downloads |
|
| Model Name | Length | Download | Notes | |
|
|---------------------------------------------------------|--------|------------------------------------|-----------------------| |
|
| 👉 **Seed-Coder-8B-Base** | 32K | 🤗 [Model](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base) | Pretrained on our model-centric code data. | |
|
| Seed-Coder-8B-Instruct | 32K | 🤗 [Model](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Instruct) | Instruction-tuned for alignment with user intent. | |
|
| Seed-Coder-8B-Reasoning | 32K | 🤗 [Model](https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Reasoning) | RL trained to boost reasoning capabilities. | |
|
|
|
|
|
## Requirements |
|
You will need to install the latest versions of `transformers` and `accelerate`: |
|
|
|
```bash |
|
pip install -U transformers accelerate |
|
``` |
|
|
|
## Quickstart |
|
|
|
Here is a simple example demonstrating how to load the model and perform code generation using the Hugging Face `pipeline` API: |
|
|
|
```python |
|
import transformers |
|
import torch |
|
|
|
model_id = "ByteDance-Seed/Seed-Coder-8B-Base" |
|
|
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_id, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device_map="auto", |
|
) |
|
|
|
output = pipeline("def say_hello_world():", max_new_tokens=100) |
|
print(output[0]["generated_text"]) |
|
``` |
|
|
|
### Fill-in-the-Middle (FIM) Example |
|
|
|
Seed-Coder-8B-Base natively supports **Fill-in-the-Middle (FIM)** tasks, where the model is given a prefix and a suffix and asked to predict the missing middle content. This allows for code infilling scenarios such as completing a function body or inserting missing logic between two pieces of code. |
|
|
|
A typical example: |
|
|
|
```python |
|
import transformers |
|
import torch |
|
|
|
model_id = "ByteDance-Seed/Seed-Coder-8B-Base" |
|
|
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model_id, |
|
model_kwargs={"torch_dtype": torch.bfloat16}, |
|
device_map="auto", |
|
) |
|
|
|
# You can concatenate a prefix, a special FIM separator token, and a suffix |
|
prefix = "def add_numbers(a, b):\n " |
|
suffix = "\n return result" |
|
|
|
# Combine prefix and suffix following the FIM format |
|
fim_input = '<[fim-suffix]>' + suffix + '<[fim-prefix]>' + prefix + '<[fim-middle]>' |
|
|
|
output = pipeline(fim_input, max_new_tokens=512) |
|
print(output[0]["generated_text"]) |
|
``` |
|
|
|
## Evaluation |
|
|
|
Seed-Coder-8B-Base has been evaluated on code generation, code completion, and code reasoning benchmarks, achieving state-of-the-art performance among ~8B open-source models. |
|
|
|
| | DeepSeek-Coder-6.7B-Base | OpenCoder-8B-Base | Qwen2.5-Coder-7B | Seed-Coder-8B-Base | |
|
|------------|:------------------------:|:-----------------:|:----------------:|:------------------:| |
|
| HumanEval | 47.6 | 66.5 | 72.0 | 77.4 | |
|
| MBPP | 70.2 | 79.9 | 79.4 | 82.0 | |
|
| MultiPL-E | 44.7 | 61.0 | 58.8 | 67.6 | |
|
| cruxeval-O | 41.0 | 43.9 | 56.0 | 48.4 | |
|
|
|
For detailed benchmark performance, please refer to our [📑 Technical Report](https://github.com/ByteDance-Seed/Seed-Coder/blob/master/Seed-Coder.pdf). |
|
|
|
|
|
## License |
|
|
|
This project is licensed under the MIT License. See the [LICENSE file](https://github.com/ByteDance-Seed/Seed-Coder/blob/master/LICENSE) for details. |
|
|
|
<!-- ## Citation |
|
|
|
If you find Seed-Coder helpful, please consider citing our work: |
|
|
|
``` |
|
@article{bytedance2025seedcoder, |
|
title={Seed-Coder: Let the Code Model Curate Data for Itself}, |
|
author={Xxx}, |
|
year={2025}, |
|
eprint={xxxx.xxxxx}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.AI}, |
|
url={https://arxiv.org/abs/xxxx.xxxxx}, |
|
} |
|
``` --> |