|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: EleutherAI/gpt-neo-1.3B |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- Ben10x/MedMentions-MTI881-NER |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: gpt-medmentions |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: Ben10x/MedMentions-MTI881-NER |
|
type: Ben10x/MedMentions-MTI881-NER |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.4453316069630269 |
|
- name: Recall |
|
type: recall |
|
value: 0.5247499576199356 |
|
- name: F1 |
|
type: f1 |
|
value: 0.48178988326848243 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.8454107464662687 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# gpt-medmentions |
|
|
|
This model is a fine-tuned version of [EleutherAI/gpt-neo-1.3B](https://huggingface.co/EleutherAI/gpt-neo-1.3B) on the Ben10x/MedMentions-MTI881-NER dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5111 |
|
- Precision: 0.4453 |
|
- Recall: 0.5247 |
|
- F1: 0.4818 |
|
- Accuracy: 0.8454 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.5307 | 1.0 | 5850 | 0.5369 | 0.4129 | 0.4711 | 0.4401 | 0.8341 | |
|
| 0.3585 | 2.0 | 11700 | 0.5111 | 0.4453 | 0.5247 | 0.4818 | 0.8454 | |
|
| 0.1758 | 3.0 | 17550 | 0.6349 | 0.4718 | 0.4900 | 0.4807 | 0.8497 | |
|
| 0.0751 | 4.0 | 23400 | 0.9264 | 0.4628 | 0.5208 | 0.4901 | 0.8497 | |
|
| 0.0387 | 5.0 | 29250 | 1.0903 | 0.4758 | 0.5181 | 0.4960 | 0.8518 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.50.3 |
|
- Pytorch 2.6.0+cu124 |
|
- Datasets 3.5.0 |
|
- Tokenizers 0.21.1 |
|
|