|
--- |
|
language: |
|
- zh |
|
- en |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- transformers |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
license: apache-2.0 |
|
--- |
|
|
|
<h1 align="center">FlagEmbedding</h1> |
|
|
|
For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding). |
|
|
|
**BGE-Code-v1** is an LLM-based code embedding model that supports code retrieval, text retrieval, and multilingual retrieval. It primarily demonstrates the following capabilities: |
|
- Superior Code Retrieval Performance: The model demonstrates exceptional code retrieval capabilities, supporting natural language queries in both English and Chinese, as well as 20 programming languages. |
|
- Robust Text Retrieval Capabilities: The model maintains strong text retrieval capabilities comparable to text embedding models of similar scale. |
|
- Extensive Multilingual Support: BGE-Code-v1 offers comprehensive multilingual retrieval capabilities, excelling in languages such as English, Chinese, Japanese, French, and more. |
|
|
|
## Usage |
|
|
|
### Using FlagEmbedding |
|
|
|
``` |
|
git clone https://github.com/FlagOpen/FlagEmbedding.git |
|
cd FlagEmbedding |
|
pip install -e . |
|
``` |
|
|
|
```python |
|
from FlagEmbedding import FlagLLMModel |
|
queries = [ |
|
"Delete the record with ID 4 from the 'Staff' table.", |
|
'Delete all records in the "Livestock" table where age is greater than 5' |
|
] |
|
documents = [ |
|
"DELETE FROM Staff WHERE StaffID = 4;", |
|
"DELETE FROM Livestock WHERE age > 5;" |
|
] |
|
model = FlagLLMModel('BAAI/bge-code-v1', |
|
query_instruction_format="<instruct>{}\n<query>{}", |
|
query_instruction_for_retrieval="Given a question in text, retrieve SQL queries that are appropriate responses to the question.", |
|
trust_remote_code=True, |
|
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation |
|
embeddings_1 = model.encode_queries(queries) |
|
embeddings_2 = model.encode_corpus(documents) |
|
similarity = embeddings_1 @ embeddings_2.T |
|
print(similarity) |
|
``` |
|
|
|
By default, FlagLLMModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs. You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable. |
|
|
|
### Using Sentence Transformers |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
import torch |
|
|
|
# Load the model, optionally in float16 precision for faster inference |
|
model = SentenceTransformer("BAAI/bge-code-v1", model_kwargs={"torch_dtype": torch.float16, "trust_remote_code": True}, tokenizer_kwargs={"trust_remote_code": True}) |
|
|
|
# Prepare a prompt given an instruction |
|
instruction = 'Given a question in text, retrieve SQL queries that are appropriate responses to the question.' |
|
prompt = f'<instruct>{instruction}\n<query>' |
|
# Prepare queries and documents |
|
queries = [ |
|
"Delete the record with ID 4 from the 'Staff' table.", |
|
'Delete all records in the "Livestock" table where age is greater than 5' |
|
] |
|
documents = [ |
|
"DELETE FROM Staff WHERE StaffID = 4;", |
|
"DELETE FROM Livestock WHERE age > 5;" |
|
] |
|
|
|
# Compute the query and document embeddings |
|
query_embeddings = model.encode(queries, prompt=prompt) |
|
document_embeddings = model.encode(documents) |
|
|
|
# Compute the cosine similarity between the query and document embeddings |
|
similarities = model.similarity(query_embeddings, document_embeddings) |
|
print(similarities) |
|
``` |
|
|
|
### Using HuggingFace Transformers |
|
|
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def last_token_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'<instruct>{task_description}\n<query>{query}' |
|
|
|
|
|
instruction = 'Given a question in text, retrieve SQL queries that are appropriate responses to the question.' |
|
queries = [ |
|
"Delete the record with ID 4 from the 'Staff' table.", |
|
'Delete all records in the "Livestock" table where age is greater than 5' |
|
] |
|
documents = [ |
|
"DELETE FROM Staff WHERE StaffID = 4;", |
|
"DELETE FROM Livestock WHERE age > 5;" |
|
] |
|
input_texts = queries + documents |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-code-v1', trust_remote_code=True) |
|
model = AutoModel.from_pretrained('BAAI/bge-code-v1', trust_remote_code=True) |
|
model.eval() |
|
|
|
max_length = 4096 |
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8) |
|
|
|
with torch.no_grad(): |
|
outputs = model(**batch_dict) |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
## Evaluation |
|
|
|
**BGE-Code-v1** achieves state-of-the-art performance on both the CoIR and CodeRAG benchmarks. |
|
|
|
- CoIR |
|
|
|
| | CodeXEmbed-2B | CodeXEmbed-7B | Voyage-Code-002 | Voyage-Code-003 | BGE-Code-v1 | |
|
|---------------------------------------|---------------|---------------|-----------------|-----------------|-----------| |
|
| Apps | 76.86 | 85.38 | 26.52 | 93.62 | 98.08 | |
|
| CosQA | 40.47 | 42.47 | 29.79 | 34.45 | 46.72 | |
|
| Text2SQL | 78.42 | 78.94 | 69.26 | 62.87 | 64.35 | |
|
| CSN | 87.87 | 89.67 | 81.79 | 89.35 | 89.53 | |
|
| CSN-CCR | 97.66 | 97.95 | 73.45 | 90.05 | 98.30 | |
|
| CodeTrans-Contest | 90.30 | 94.45 | 72.77 | 94.96 | 94.38 | |
|
| CodeTrans-DL | 38.57 | 40.46 | 27.48 | 38.57 | 46.13 | |
|
| StackOverFlow-QA | 94.47 | 96.33 | 67.68 | 97.17 | 95.35 | |
|
| CodeFeedBack-ST | 86.36 | 87.53 | 65.35 | 90.67 | 90.56 | |
|
| CodeFeedBack-MT | 65.51 | 68.83 | 28.74 | 93.58 | 94.38 | |
|
| AVG | 75.65 | 78.20 | 56.26 | 78.53 | 81.77 | |
|
|
|
- CodedRAG |
|
|
|
| | HummanEval | MBPP | DS-1000 | ODEX | RepoEval | SWE-bench-Lite | AVG | |
|
| --------------- | ---------- | ---- | ------- | ---- | -------- | -------------- | ---- | |
|
| SFR | 100.0 | 99.0 | 19.3 | 37.1 | 83.8 | 62.7 | 67.0 | |
|
| Jina-v2-code | 100.0 | 97.7 | 26.2 | 19.9 | 90.5 | 58.3 | 65.4 | |
|
| CodeXEmbed-2B | 100.0 | 97.4 | 25.4 | 23.9 | 88.7 | 52.4 | 64.6 | |
|
| Voyage-Code-002 | 100.0 | 99.0 | 33.1 | 26.6 | 94.3 | 29.1 | 63.7 | |
|
| Voyage-Code-003 | 100.0 | 99.6 | 38.9 | 36.3 | 90.0 | 70.1 | 72.5 | |
|
| BGE-Code-v1 | 100.0 | 99.2 | 40.9 | 36.1 | 93.1 | 67.4 | 72.8 | |
|
|
|
## Citation |
|
|
|
If you find this repository useful, please consider giving a star :star: and citation |
|
|
|
``` |
|
@article{bge-llm, |
|
title={Making text embedders few-shot learners}, |
|
author={Li, Chaofan and Qin, MingHao and Xiao, Shitao and Chen, Jianlyu and Luo, Kun and Shao, Yingxia and Lian, Defu and Liu, Zheng}, |
|
journal={arXiv preprint arXiv:2409.15700}, |
|
year={2024} |
|
} |
|
|
|
@misc{bge-m3, |
|
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation}, |
|
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu}, |
|
year={2024}, |
|
eprint={2402.03216}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
|
|
|
|
@misc{bge_embedding, |
|
title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, |
|
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff}, |
|
year={2023}, |
|
eprint={2309.07597}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |