|  | --- | 
					
						
						|  | license: mit | 
					
						
						|  | library_name: transformers | 
					
						
						|  | datasets: | 
					
						
						|  | - AI-MO/NuminaMath-CoT | 
					
						
						|  | - KbsdJames/Omni-MATH | 
					
						
						|  | - RUC-AIBOX/STILL-3-Preview-RL-Data | 
					
						
						|  | - hendrycks/competition_math | 
					
						
						|  | language: | 
					
						
						|  | - en | 
					
						
						|  | base_model: agentica-org/DeepScaleR-1.5B-Preview | 
					
						
						|  | tags: | 
					
						
						|  | - mlx | 
					
						
						|  | --- | 
					
						
						|  |  | 
					
						
						|  | # About: | 
					
						
						|  |  | 
					
						
						|  | **A fine-tuned version of Deepseek-R1-Distilled-Qwen-1.5B that surpasses the performance of OpenAI’s o1-preview with just 1.5B parameters on popular math evaluations.** | 
					
						
						|  |  | 
					
						
						|  | *Special thanks to Agentica for fine-tuning this version of Deepseek-R1-Distilled-Qwen-1.5B. More information about it can be found here:* | 
					
						
						|  |  | 
					
						
						|  | https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview. (Base Model) | 
					
						
						|  |  | 
					
						
						|  | </a> | 
					
						
						|  | <a href="https://huggingface.co/agentica-org" style="margin: 2px;"> | 
					
						
						|  | <img alt="Hugging Face" src="https://img.shields.io/badge/Agentica-fcd022?style=for-the-badge&logo=huggingface&logoColor=000&labelColor" style="display: inline-block; vertical-align: middle;"/> | 
					
						
						|  | </a> | 
					
						
						|  |  | 
					
						
						|  | - Converted it to MLX format with a quantization of 8-bits for better performance on Apple Silicon Macs (M1,M2,M3,M4 Chips). | 
					
						
						|  | - If you want a bigger model size for improved accuracy or smaller size for performance, see the models below. | 
					
						
						|  |  | 
					
						
						|  | # Other Types/Quants: | 
					
						
						|  | | Link | Type | Size| Notes | | 
					
						
						|  | |-------|-----------|-----------|-----------| | 
					
						
						|  | | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-mlx) | Full | 3.57 GB | **Best Quality** | | 
					
						
						|  | | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-8bit-mlx) | 8-bit | 1.90 GB | **Better Quality** | | 
					
						
						|  | | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-6bit-mlx) | 6-bit | 1.46 GB | Good Quality| | 
					
						
						|  | | [MLX] (https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-4bit-mlx) | 4-bit | 1.01 GB | Bad Quality| | 
					
						
						|  |  | 
					
						
						|  | # AlejandroOlmedo/DeepScaleR-1.5B-Preview-8bit-mlx | 
					
						
						|  |  | 
					
						
						|  | The Model [AlejandroOlmedo/DeepScaleR-1.5B-Preview-8bit-mlx](https://huggingface.co/AlejandroOlmedo/DeepScaleR-1.5B-Preview-8bit-mlx) was converted to MLX format from [agentica-org/DeepScaleR-1.5B-Preview](https://huggingface.co/agentica-org/DeepScaleR-1.5B-Preview) using mlx-lm version **0.20.5**. | 
					
						
						|  |  | 
					
						
						|  | ## Use with mlx | 
					
						
						|  |  | 
					
						
						|  | ```bash | 
					
						
						|  | pip install mlx-lm | 
					
						
						|  | ``` | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | from mlx_lm import load, generate | 
					
						
						|  |  | 
					
						
						|  | model, tokenizer = load("AlejandroOlmedo/DeepScaleR-1.5B-Preview-8bit-mlx") | 
					
						
						|  |  | 
					
						
						|  | prompt="hello" | 
					
						
						|  |  | 
					
						
						|  | if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: | 
					
						
						|  | messages = [{"role": "user", "content": prompt}] | 
					
						
						|  | prompt = tokenizer.apply_chat_template( | 
					
						
						|  | messages, tokenize=False, add_generation_prompt=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | response = generate(model, tokenizer, prompt=prompt, verbose=True) | 
					
						
						|  | ``` | 
					
						
						|  |  |