|
|
--- |
|
|
library_name: transformers |
|
|
license: bsd-3-clause |
|
|
base_model: |
|
|
- OpenGVLab/InternVL3-1B |
|
|
tags: |
|
|
- InternVL3 |
|
|
- InternVL3-1B |
|
|
- Int8 |
|
|
- VLM |
|
|
pipeline_tag: image-text-to-text |
|
|
language: |
|
|
- en |
|
|
--- |
|
|
|
|
|
# InternVL3-1B |
|
|
|
|
|
This version of InternVL3-1B has been converted to run on the Axera NPU using **w8a16** quantization. |
|
|
|
|
|
This model has been optimized with the following LoRA: |
|
|
|
|
|
Compatible with Pulsar2 version: 4.1 |
|
|
|
|
|
## Convert tools links: |
|
|
|
|
|
For those who are interested in model conversion, you can try to export axmodel through the original repo : |
|
|
https://huggingface.co/OpenGVLab/InternVL3-1B |
|
|
|
|
|
[How to Convert LLM from Huggingface to axmodel](https://github.com/AXERA-TECH/InternVL3-2B.axera/tree/master/model_convert) |
|
|
|
|
|
[AXera NPU HOST LLM Runtime](https://github.com/AXERA-TECH/ax-llm/tree/ax-internvl) |
|
|
|
|
|
[AXera NPU AXCL LLM Runtime](https://github.com/AXERA-TECH/ax-llm/tree/axcl-internvl) |
|
|
|
|
|
## Support Platform |
|
|
|
|
|
- AX650 |
|
|
- AX650N DEMO Board |
|
|
- [M4N-Dock(爱芯派Pro)](https://wiki.sipeed.com/hardware/zh/maixIV/m4ndock/m4ndock.html) |
|
|
- [M.2 Accelerator card](https://axcl-docs.readthedocs.io/zh-cn/latest/doc_guide_hardware.html) |
|
|
|
|
|
|Chips|image encoder 448|ttft|w8a16| |
|
|
|--|--|--|--| |
|
|
|AX650| 380 ms | 623 ms |30 tokens/sec| |
|
|
|
|
|
|
|
|
## How to use |
|
|
|
|
|
Download all files from this repository to the device |
|
|
|
|
|
``` |
|
|
root@ax650:/mnt/qtang/llm-test/internvl3-1b# tree -L 1 |
|
|
. |
|
|
|-- gradio_demo.py |
|
|
|-- internvl3_1b_ax650 |
|
|
|-- internvl3_tokenizer |
|
|
|-- internvl3_tokenizer.py |
|
|
|-- main_api_ax650 |
|
|
|-- main_api_axcl_x86 |
|
|
|-- main_ax650 |
|
|
|-- main_axcl_x86 |
|
|
|-- post_config.json |
|
|
|-- run_internvl_3_1b_448_api_ax650.sh |
|
|
|-- run_internvl_3_1b_448_api_axcl_x86.sh |
|
|
|-- run_internvl_3_1b_448_ax650.sh |
|
|
|-- run_internvl_3_1b_448_axcl_x86.sh |
|
|
`-- ssd_car.jpg |
|
|
``` |
|
|
|
|
|
#### Install transformer |
|
|
|
|
|
``` |
|
|
pip install transformers==4.41.1 |
|
|
``` |
|
|
|
|
|
#### Start the Tokenizer service |
|
|
|
|
|
``` |
|
|
root@ax650:/mnt/qtang/llm-test/internvl3-1b# python3 internvl3_tokenizer.py |
|
|
None None 151645 <|im_end|> 151665 151667 |
|
|
context_len is 256 |
|
|
prompt is <|im_start|>system |
|
|
你是书生·万象, 英文名是InternVL, 是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型.<|im_end|> |
|
|
...... |
|
|
http://0.0.0.0:12345 |
|
|
``` |
|
|
|
|
|
#### Inference with AX650 Host, such as M4N-Dock(爱芯派Pro) or AX650 DEMO Board |
|
|
|
|
|
- input text |
|
|
|
|
|
``` |
|
|
描述下图片 |
|
|
``` |
|
|
|
|
|
- input image |
|
|
|
|
|
 |
|
|
|
|
|
Open another terminal and run `./run_internvl3_1b_448_ax650.sh` |
|
|
|
|
|
``` |
|
|
root@ax650:/mnt/qtang/llm-test/internvl3-1b# ./run_internvl_3_1b_448_ax650.sh |
|
|
[I][ Init][ 134]: LLM init start |
|
|
[I][ Init][ 34]: connect http://0.0.0.0:12345 ok |
|
|
bos_id: -1, eos_id: 151645 |
|
|
img_start_token: 151665 |
|
|
img_context_token: 151667 |
|
|
3% | ██ | 1 / 27 [0.01s<0.32s, 83.33 count/s] tokenizer init ok |
|
|
[I][ Init][ 45]: LLaMaEmbedSelector use mmap |
|
|
7% | ███ | 2 / 27 [0.01s<0.19s, 142.86 count/s] embed_selector init ok |
|
|
100% | ████████████████████████████████ | 27 / 27 [6.92s<6.92s, 3.90 count/s] init post axmodel ok,remain_cmm(11068 MB) |
|
|
[I][ Init][ 226]: IMAGE_CONTEXT_TOKEN: 151667, IMAGE_START_TOKEN: 151665 |
|
|
[I][ Init][ 251]: image encoder input nchw@float32 |
|
|
[I][ Init][ 281]: image encoder output float32 |
|
|
[I][ Init][ 291]: image_encoder_height : 448, image_encoder_width: 448 |
|
|
[I][ Init][ 293]: max_token_len : 2047 |
|
|
[I][ Init][ 296]: kv_cache_size : 128, kv_cache_num: 2047 |
|
|
[I][ Init][ 304]: prefill_token_num : 128 |
|
|
[I][ Init][ 308]: grp: 1, prefill_max_token_num : 1 |
|
|
[I][ Init][ 308]: grp: 2, prefill_max_token_num : 128 |
|
|
[I][ Init][ 308]: grp: 3, prefill_max_token_num : 256 |
|
|
[I][ Init][ 308]: grp: 4, prefill_max_token_num : 384 |
|
|
[I][ Init][ 308]: grp: 5, prefill_max_token_num : 512 |
|
|
[I][ Init][ 308]: grp: 6, prefill_max_token_num : 640 |
|
|
[I][ Init][ 308]: grp: 7, prefill_max_token_num : 768 |
|
|
[I][ Init][ 308]: grp: 8, prefill_max_token_num : 896 |
|
|
[I][ Init][ 308]: grp: 9, prefill_max_token_num : 1024 |
|
|
[I][ Init][ 312]: prefill_max_token_num : 1024 |
|
|
[I][ load_config][ 282]: load config: |
|
|
{ |
|
|
"enable_repetition_penalty": false, |
|
|
"enable_temperature": true, |
|
|
"enable_top_k_sampling": true, |
|
|
"enable_top_p_sampling": false, |
|
|
"penalty_window": 20, |
|
|
"repetition_penalty": 1.2, |
|
|
"temperature": 0.9, |
|
|
"top_k": 10, |
|
|
"top_p": 0.8 |
|
|
} |
|
|
|
|
|
[I][ Init][ 321]: LLM init ok |
|
|
Type "q" to exit, Ctrl+c to stop current running |
|
|
prompt >> 描述下图片 |
|
|
image >> ssd_car.jpg |
|
|
[I][ Encode][ 415]: image encode time : 387.35 ms, size : 229376 |
|
|
[I][ Encode][ 524]: idx:0 offset : 50 out_embed.size() : 279552 |
|
|
[I][ Run][ 551]: input token num : 312, prefill_split_num : 3 |
|
|
[I][ Run][ 566]: prefill grpid 4 |
|
|
[I][ Run][ 593]: input_num_token:128 |
|
|
[I][ Run][ 593]: input_num_token:128 |
|
|
[I][ Run][ 593]: input_num_token:56 |
|
|
[I][ Run][ 717]: ttft: 623.71 ms |
|
|
图片中出现的物体包括: |
|
|
|
|
|
1. 一辆红色的双层巴士,巴士上有一则广告,广告上写着“THINGS GET MORE EXCITING WHEN YOU SAY YES” (当你说“是”时,事情就更兴奋了)。 |
|
|
2. 一位微笑的女性站在巴士旁边。 |
|
|
3. 一辆黑色的汽车停在路边。 |
|
|
4. 一家商店的橱窗。 |
|
|
5. 一些建筑物的外墙和窗户。 |
|
|
6. 一根黑色的路灯杆。 |
|
|
|
|
|
这些是图片中实际存在的物体。 |
|
|
|
|
|
[N][ Run][ 826]: hit eos,avg 28.78 token/s |
|
|
|
|
|
prompt >> q |
|
|
|
|
|
``` |