|
|
--- |
|
|
tags: |
|
|
- summarization |
|
|
language: |
|
|
- it |
|
|
metrics: |
|
|
- rouge |
|
|
model-index: |
|
|
- name: summarization_mbart_ilpost |
|
|
results: [] |
|
|
datasets: |
|
|
- ARTeLab/ilpost |
|
|
--- |
|
|
|
|
|
# mbart_summarization_ilpost |
|
|
|
|
|
This model is a fine-tuned version of [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) on IlPost dataset for Abstractive Summarization.. |
|
|
|
|
|
It achieves the following results: |
|
|
- Loss: 2.3640 |
|
|
- Rouge1: 38.9101 |
|
|
- Rouge2: 21.384 |
|
|
- Rougel: 32.0517 |
|
|
- Rougelsum: 35.0743 |
|
|
- Gen Len: 39.8843 |
|
|
|
|
|
## Usage |
|
|
```python |
|
|
from transformers import MBartTokenizer, MBartForConditionalGeneration |
|
|
tokenizer = MBartTokenizer.from_pretrained("ARTeLab/mbart-summarization-ilpost") |
|
|
model = MBartForConditionalGeneration.from_pretrained("ARTeLab/mbart-summarization-ilpost") |
|
|
``` |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 5e-05 |
|
|
- train_batch_size: 1 |
|
|
- eval_batch_size: 1 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 4.0 |
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.15.0.dev0 |
|
|
- Pytorch 1.10.0+cu102 |
|
|
- Datasets 1.15.1 |
|
|
- Tokenizers 0.10.3 |