Improve model card: Add pipeline_tag and enhance sample usage

#3
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +14 -12
README.md CHANGED
@@ -1,13 +1,14 @@
1
  ---
2
- license: cc-by-nc-4.0
3
- language:
4
- - en
5
  base_model:
6
  - stabilityai/stable-diffusion-3-medium
 
 
7
  library_name: diffusers
8
- tags:
9
- - text-to-image
 
10
  ---
 
11
  # TeEFusion: Blending Text Embeddings to Distill Classifier-Free Guidance (ICCV 2025)
12
 
13
  <p align="center">
@@ -27,14 +28,14 @@ TeEFusion is a simple yet powerful distillation method that fuses classifier-fre
27
 
28
  ## 🚀 Key Features
29
 
30
- * **Embed-Level Guidance Fusion**.
31
- Incorporates guidance magnitude *w* by linearly combining conditional and null prompt embeddings, eliminating the need for two forward passes .
32
 
33
- * **Test-Time Sampling Agnostic**.
34
- Distills from complex teacher sampling strategy (Euler + CFG, Z-Sampling + CFG, W2SD + CFG) into a simple student that uses standard Euler sampling .
35
 
36
- * **Parameter-Free**.
37
- No extra network modules beyond the pretrained model’s encoder and decoder.
38
 
39
  ---
40
 
@@ -56,7 +57,8 @@ from pipelines.sd3_teefusion_pipeline import TeEFusionSD3Pipeline
56
 
57
  pipe = TeEFusionSD3Pipeline.from_pretrained(
58
  "AIDC-AI/TeEFusion",
59
- torch_dtype=torch.bfloat16
 
60
  )
61
  pipe.to("cuda")
62
 
 
1
  ---
 
 
 
2
  base_model:
3
  - stabilityai/stable-diffusion-3-medium
4
+ language:
5
+ - en
6
  library_name: diffusers
7
+ license: cc-by-nc-4.0
8
+ pipeline_tag: text-to-image
9
+ tags: []
10
  ---
11
+
12
  # TeEFusion: Blending Text Embeddings to Distill Classifier-Free Guidance (ICCV 2025)
13
 
14
  <p align="center">
 
28
 
29
  ## 🚀 Key Features
30
 
31
+ * **Embed-Level Guidance Fusion**.
32
+ Incorporates guidance magnitude *w* by linearly combining conditional and null prompt embeddings, eliminating the need for two forward passes .
33
 
34
+ * **Test-Time Sampling Agnostic**.
35
+ Distills from complex teacher sampling strategy (Euler + CFG, Z-Sampling + CFG, W2SD + CFG) into a simple student that uses standard Euler sampling .
36
 
37
+ * **Parameter-Free**.
38
+ No extra network modules beyond the pretrained model’s encoder and decoder.
39
 
40
  ---
41
 
 
57
 
58
  pipe = TeEFusionSD3Pipeline.from_pretrained(
59
  "AIDC-AI/TeEFusion",
60
+ torch_dtype=torch.bfloat16,
61
+ trust_remote_code=True
62
  )
63
  pipe.to("cuda")
64