Update README.md
Browse files
README.md
CHANGED
@@ -55,7 +55,7 @@ MatchAnything-ELOFTR is designed for a vast array of applications requiring robu
|
|
55 |
|
56 |
Here is a quick example of using the model for matching a pair of images.
|
57 |
```python
|
58 |
-
from transformers import AutoImageProcessor,
|
59 |
from transformers.image_utils import load_image
|
60 |
import torch
|
61 |
|
@@ -67,7 +67,7 @@ images = [image1, image2]
|
|
67 |
|
68 |
# Load the processor and model from the Hugging Face Hub
|
69 |
processor = AutoImageProcessor.from_pretrained("zju-community/matchanything_eloftr")
|
70 |
-
model =
|
71 |
|
72 |
# Process images and get model outputs
|
73 |
inputs = processor(images, return_tensors="pt")
|
|
|
55 |
|
56 |
Here is a quick example of using the model for matching a pair of images.
|
57 |
```python
|
58 |
+
from transformers import AutoImageProcessor, AutoModelForKeypointMatching
|
59 |
from transformers.image_utils import load_image
|
60 |
import torch
|
61 |
|
|
|
67 |
|
68 |
# Load the processor and model from the Hugging Face Hub
|
69 |
processor = AutoImageProcessor.from_pretrained("zju-community/matchanything_eloftr")
|
70 |
+
model = AutoModelForKeypointMatching.from_pretrained("zju-community/matchanything_eloftr")
|
71 |
|
72 |
# Process images and get model outputs
|
73 |
inputs = processor(images, return_tensors="pt")
|