| 
							 | 
						import json | 
					
					
						
						| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						import re | 
					
					
						
						| 
							 | 
						from typing import List, Optional, Union, Dict | 
					
					
						
						| 
							 | 
						from sentencepiece import SentencePieceProcessor | 
					
					
						
						| 
							 | 
						from transformers import PreTrainedTokenizer | 
					
					
						
						| 
							 | 
						from transformers.utils import logging, PaddingStrategy | 
					
					
						
						| 
							 | 
						from transformers.tokenization_utils_base import EncodedInput, BatchEncoding | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						logger = logging.get_logger(__name__) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class SPTokenizer: | 
					
					
						
						| 
							 | 
						    def __init__(self, model_path: str): | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        assert os.path.isfile(model_path), model_path | 
					
					
						
						| 
							 | 
						        self.sp_model = SentencePieceProcessor(model_file=model_path) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.n_words: int = self.sp_model.vocab_size() | 
					
					
						
						| 
							 | 
						        self.bos_id: int = self.sp_model.bos_id() | 
					
					
						
						| 
							 | 
						        self.eos_id: int = self.sp_model.eos_id() | 
					
					
						
						| 
							 | 
						        self.pad_id: int = self.sp_model.unk_id() | 
					
					
						
						| 
							 | 
						        assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"] | 
					
					
						
						| 
							 | 
						        special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens | 
					
					
						
						| 
							 | 
						        self.special_tokens = {} | 
					
					
						
						| 
							 | 
						        self.index_special_tokens = {} | 
					
					
						
						| 
							 | 
						        for token in special_tokens: | 
					
					
						
						| 
							 | 
						            self.special_tokens[token] = self.n_words | 
					
					
						
						| 
							 | 
						            self.index_special_tokens[self.n_words] = token | 
					
					
						
						| 
							 | 
						            self.n_words += 1 | 
					
					
						
						| 
							 | 
						        self.role_special_token_expression = "|".join([re.escape(token) for token in special_tokens])  | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def tokenize(self, s: str, encode_special_tokens=False): | 
					
					
						
						| 
							 | 
						        if encode_special_tokens: | 
					
					
						
						| 
							 | 
						            last_index = 0 | 
					
					
						
						| 
							 | 
						            t = [] | 
					
					
						
						| 
							 | 
						            for match in re.finditer(self.role_special_token_expression, s): | 
					
					
						
						| 
							 | 
						                if last_index < match.start(): | 
					
					
						
						| 
							 | 
						                    t.extend(self.sp_model.EncodeAsPieces(s[last_index:match.start()])) | 
					
					
						
						| 
							 | 
						                t.append(s[match.start():match.end()]) | 
					
					
						
						| 
							 | 
						                last_index = match.end() | 
					
					
						
						| 
							 | 
						            if last_index < len(s): | 
					
					
						
						| 
							 | 
						                t.extend(self.sp_model.EncodeAsPieces(s[last_index:])) | 
					
					
						
						| 
							 | 
						            return t | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            return self.sp_model.EncodeAsPieces(s) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def encode(self, s: str, bos: bool = False, eos: bool = False) -> List[int]: | 
					
					
						
						| 
							 | 
						        assert type(s) is str | 
					
					
						
						| 
							 | 
						        t = self.sp_model.encode(s) | 
					
					
						
						| 
							 | 
						        if bos: | 
					
					
						
						| 
							 | 
						            t = [self.bos_id] + t | 
					
					
						
						| 
							 | 
						        if eos: | 
					
					
						
						| 
							 | 
						            t = t + [self.eos_id] | 
					
					
						
						| 
							 | 
						        return t | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def decode(self, t: List[int]) -> str: | 
					
					
						
						| 
							 | 
						        text, buffer = "", [] | 
					
					
						
						| 
							 | 
						        for token in t: | 
					
					
						
						| 
							 | 
						            if token in self.index_special_tokens: | 
					
					
						
						| 
							 | 
						                if buffer: | 
					
					
						
						| 
							 | 
						                    text += self.sp_model.decode(buffer) | 
					
					
						
						| 
							 | 
						                    buffer = [] | 
					
					
						
						| 
							 | 
						                text += self.index_special_tokens[token] | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                buffer.append(token) | 
					
					
						
						| 
							 | 
						        if buffer: | 
					
					
						
						| 
							 | 
						            text += self.sp_model.decode(buffer) | 
					
					
						
						| 
							 | 
						        return text | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def decode_tokens(self, tokens: List[str]) -> str: | 
					
					
						
						| 
							 | 
						        text = self.sp_model.DecodePieces(tokens) | 
					
					
						
						| 
							 | 
						        return text | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def convert_token_to_id(self, token): | 
					
					
						
						| 
							 | 
						        """ Converts a token (str) in an id using the vocab. """ | 
					
					
						
						| 
							 | 
						        if token in self.special_tokens: | 
					
					
						
						| 
							 | 
						            return self.special_tokens[token] | 
					
					
						
						| 
							 | 
						        return self.sp_model.PieceToId(token) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def convert_id_to_token(self, index): | 
					
					
						
						| 
							 | 
						        """Converts an index (integer) in a token (str) using the vocab.""" | 
					
					
						
						| 
							 | 
						        if index in self.index_special_tokens: | 
					
					
						
						| 
							 | 
						            return self.index_special_tokens[index] | 
					
					
						
						| 
							 | 
						        if index in [self.eos_id, self.bos_id, self.pad_id] or index < 0 or index > self.sp_model.vocab_size(): | 
					
					
						
						| 
							 | 
						            return "" | 
					
					
						
						| 
							 | 
						        return self.sp_model.IdToPiece(index) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class ChatGLMTokenizer(PreTrainedTokenizer): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    vocab_files_names = {"vocab_file": "tokenizer.model"} | 
					
					
						
						| 
							 | 
						    model_input_names = ["input_ids", "attention_mask", "position_ids"] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        vocab_file, | 
					
					
						
						| 
							 | 
						        padding_side="left", | 
					
					
						
						| 
							 | 
						        clean_up_tokenization_spaces=False, | 
					
					
						
						| 
							 | 
						        encode_special_tokens=False, | 
					
					
						
						| 
							 | 
						        **kwargs | 
					
					
						
						| 
							 | 
						    ): | 
					
					
						
						| 
							 | 
						        self.name = "GLMTokenizer" | 
					
					
						
						| 
							 | 
						        self.vocab_file = vocab_file | 
					
					
						
						| 
							 | 
						        self.tokenizer = SPTokenizer(vocab_file) | 
					
					
						
						| 
							 | 
						        self.special_tokens = { | 
					
					
						
						| 
							 | 
						            "<bos>": self.tokenizer.bos_id, | 
					
					
						
						| 
							 | 
						            "<eos>": self.tokenizer.eos_id, | 
					
					
						
						| 
							 | 
						            "<unk>": self.tokenizer.pad_id, | 
					
					
						
						| 
							 | 
						            "<pad>": self.tokenizer.pad_id | 
					
					
						
						| 
							 | 
						        } | 
					
					
						
						| 
							 | 
						        self.encode_special_tokens = encode_special_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        super().__init__( | 
					
					
						
						| 
							 | 
						            padding_side=padding_side, | 
					
					
						
						| 
							 | 
						            clean_up_tokenization_spaces=clean_up_tokenization_spaces, | 
					
					
						
						| 
							 | 
						            **kwargs | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_command(self, token): | 
					
					
						
						| 
							 | 
						        if token in self.special_tokens: | 
					
					
						
						| 
							 | 
						            return self.special_tokens[token] | 
					
					
						
						| 
							 | 
						        assert token in self.tokenizer.special_tokens, f"{token} is not a special token for {self.name}" | 
					
					
						
						| 
							 | 
						        return self.tokenizer.special_tokens[token] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def unk_token(self) -> str: | 
					
					
						
						| 
							 | 
						        return self.tokenizer.sp_model.IdToPiece(self.get_command("<unk>")) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def pad_token(self) -> str: | 
					
					
						
						| 
							 | 
						        return self.tokenizer.sp_model.IdToPiece(self.get_command("<pad>")) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def eos_token(self) -> str: | 
					
					
						
						| 
							 | 
						        return self.tokenizer.sp_model.IdToPiece(self.get_command("<eos>")) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def unk_token_id(self) -> int: | 
					
					
						
						| 
							 | 
						        return self.get_command("<unk>") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def pad_token_id(self) -> int: | 
					
					
						
						| 
							 | 
						        return self.get_command("<pad>") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def eos_token_id(self): | 
					
					
						
						| 
							 | 
						        return self.get_command("<eos>") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @unk_token.setter | 
					
					
						
						| 
							 | 
						    def unk_token(self, value): | 
					
					
						
						| 
							 | 
						        logger.warning("Setting unk_token is not supported, use the default one.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @pad_token.setter | 
					
					
						
						| 
							 | 
						    def pad_token(self, value): | 
					
					
						
						| 
							 | 
						        logger.warning("Setting pad_token is not supported, use the default one.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @eos_token.setter | 
					
					
						
						| 
							 | 
						    def eos_token(self, value): | 
					
					
						
						| 
							 | 
						        logger.warning("Setting eos_token is not supported, use the default one.") | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    @property | 
					
					
						
						| 
							 | 
						    def vocab_size(self): | 
					
					
						
						| 
							 | 
						        return self.tokenizer.n_words | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_vocab(self): | 
					
					
						
						| 
							 | 
						        """ Returns vocab as a dict """ | 
					
					
						
						| 
							 | 
						        vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)} | 
					
					
						
						| 
							 | 
						        vocab.update(self.added_tokens_encoder) | 
					
					
						
						| 
							 | 
						        return vocab | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _tokenize(self, text, **kwargs): | 
					
					
						
						| 
							 | 
						        return self.tokenizer.tokenize(text, encode_special_tokens=self.encode_special_tokens) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _convert_token_to_id(self, token): | 
					
					
						
						| 
							 | 
						        """ Converts a token (str) in an id using the vocab. """ | 
					
					
						
						| 
							 | 
						        return self.tokenizer.convert_token_to_id(token) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _convert_id_to_token(self, index): | 
					
					
						
						| 
							 | 
						        """Converts an index (integer) in a token (str) using the vocab.""" | 
					
					
						
						| 
							 | 
						        return self.tokenizer.convert_id_to_token(index) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def convert_tokens_to_string(self, tokens: List[str]) -> str: | 
					
					
						
						| 
							 | 
						        return self.tokenizer.decode_tokens(tokens) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def save_vocabulary(self, save_directory, filename_prefix=None): | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Save the vocabulary and special tokens file to a directory. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            save_directory (`str`): | 
					
					
						
						| 
							 | 
						                The directory in which to save the vocabulary. | 
					
					
						
						| 
							 | 
						            filename_prefix (`str`, *optional*): | 
					
					
						
						| 
							 | 
						                An optional prefix to add to the named of the saved files. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `Tuple(str)`: Paths to the files saved. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        if os.path.isdir(save_directory): | 
					
					
						
						| 
							 | 
						            vocab_file = os.path.join( | 
					
					
						
						| 
							 | 
						                save_directory, self.vocab_files_names["vocab_file"] | 
					
					
						
						| 
							 | 
						            ) | 
					
					
						
						| 
							 | 
						        else: | 
					
					
						
						| 
							 | 
						            vocab_file = save_directory | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        with open(self.vocab_file, 'rb') as fin: | 
					
					
						
						| 
							 | 
						            proto_str = fin.read() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        with open(vocab_file, "wb") as writer: | 
					
					
						
						| 
							 | 
						            writer.write(proto_str) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return (vocab_file,) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def get_prefix_tokens(self): | 
					
					
						
						| 
							 | 
						        prefix_tokens = [self.get_command("[gMASK]"), self.get_command("sop")] | 
					
					
						
						| 
							 | 
						        return prefix_tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def build_single_message(self, role, metadata, message): | 
					
					
						
						| 
							 | 
						        assert role in ["system", "user", "assistant", "observation"], role | 
					
					
						
						| 
							 | 
						        role_tokens = [self.get_command(f"<|{role}|>")] + self.tokenizer.encode(f"{metadata}\n") | 
					
					
						
						| 
							 | 
						        message_tokens = self.tokenizer.encode(message) | 
					
					
						
						| 
							 | 
						        tokens = role_tokens + message_tokens | 
					
					
						
						| 
							 | 
						        return tokens | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def build_chat_input(self, query, history=None, role="user"): | 
					
					
						
						| 
							 | 
						        if history is None: | 
					
					
						
						| 
							 | 
						            history = [] | 
					
					
						
						| 
							 | 
						        input_ids = [] | 
					
					
						
						| 
							 | 
						        for item in history: | 
					
					
						
						| 
							 | 
						            content = item["content"] | 
					
					
						
						| 
							 | 
						            if item["role"] == "system" and "tools" in item: | 
					
					
						
						| 
							 | 
						                content = content + "\n" + json.dumps(item["tools"], indent=4, ensure_ascii=False) | 
					
					
						
						| 
							 | 
						            input_ids.extend(self.build_single_message(item["role"], item.get("metadata", ""), content)) | 
					
					
						
						| 
							 | 
						        input_ids.extend(self.build_single_message(role, "", query)) | 
					
					
						
						| 
							 | 
						        input_ids.extend([self.get_command("<|assistant|>")]) | 
					
					
						
						| 
							 | 
						        return self.batch_encode_plus([input_ids], return_tensors="pt", is_split_into_words=True) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def build_inputs_with_special_tokens( | 
					
					
						
						| 
							 | 
						        self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
					
						
						| 
							 | 
						    ) -> List[int]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and | 
					
					
						
						| 
							 | 
						        adding special tokens. A BERT sequence has the following format: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        - single sequence: `[CLS] X [SEP]` | 
					
					
						
						| 
							 | 
						        - pair of sequences: `[CLS] A [SEP] B [SEP]` | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            token_ids_0 (`List[int]`): | 
					
					
						
						| 
							 | 
						                List of IDs to which the special tokens will be added. | 
					
					
						
						| 
							 | 
						            token_ids_1 (`List[int]`, *optional*): | 
					
					
						
						| 
							 | 
						                Optional second list of IDs for sequence pairs. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Returns: | 
					
					
						
						| 
							 | 
						            `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        prefix_tokens = self.get_prefix_tokens() | 
					
					
						
						| 
							 | 
						        token_ids_0 = prefix_tokens + token_ids_0 | 
					
					
						
						| 
							 | 
						        if token_ids_1 is not None: | 
					
					
						
						| 
							 | 
						            token_ids_0 = token_ids_0 + token_ids_1 + [self.get_command("<eos>")] | 
					
					
						
						| 
							 | 
						        return token_ids_0 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def _pad( | 
					
					
						
						| 
							 | 
						        self, | 
					
					
						
						| 
							 | 
						        encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], | 
					
					
						
						| 
							 | 
						        max_length: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | 
					
					
						
						| 
							 | 
						        pad_to_multiple_of: Optional[int] = None, | 
					
					
						
						| 
							 | 
						        return_attention_mask: Optional[bool] = None, | 
					
					
						
						| 
							 | 
						    ) -> dict: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Pad encoded inputs (on left/right and up to predefined length or max length in the batch) | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						            encoded_inputs: | 
					
					
						
						| 
							 | 
						                Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). | 
					
					
						
						| 
							 | 
						            max_length: maximum length of the returned list and optionally padding length (see below). | 
					
					
						
						| 
							 | 
						                Will truncate by taking into account the special tokens. | 
					
					
						
						| 
							 | 
						            padding_strategy: PaddingStrategy to use for padding. | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                - PaddingStrategy.LONGEST Pad to the longest sequence in the batch | 
					
					
						
						| 
							 | 
						                - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) | 
					
					
						
						| 
							 | 
						                - PaddingStrategy.DO_NOT_PAD: Do not pad | 
					
					
						
						| 
							 | 
						                The tokenizer padding sides are defined in self.padding_side: | 
					
					
						
						| 
							 | 
						 | 
					
					
						
						| 
							 | 
						                    - 'left': pads on the left of the sequences | 
					
					
						
						| 
							 | 
						                    - 'right': pads on the right of the sequences | 
					
					
						
						| 
							 | 
						            pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. | 
					
					
						
						| 
							 | 
						                This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability | 
					
					
						
						| 
							 | 
						                `>= 7.5` (Volta). | 
					
					
						
						| 
							 | 
						            return_attention_mask: | 
					
					
						
						| 
							 | 
						                (optional) Set to False to avoid returning attention mask (default: set to model specifics) | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        assert self.padding_side == "left" | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        required_input = encoded_inputs[self.model_input_names[0]] | 
					
					
						
						| 
							 | 
						        seq_length = len(required_input) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if padding_strategy == PaddingStrategy.LONGEST: | 
					
					
						
						| 
							 | 
						            max_length = len(required_input) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): | 
					
					
						
						| 
							 | 
						            max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        if "attention_mask" not in encoded_inputs: | 
					
					
						
						| 
							 | 
						            encoded_inputs["attention_mask"] = [1] * seq_length | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if "position_ids" not in encoded_inputs: | 
					
					
						
						| 
							 | 
						            encoded_inputs["position_ids"] = list(range(seq_length)) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        if needs_to_be_padded: | 
					
					
						
						| 
							 | 
						            difference = max_length - len(required_input) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            if "attention_mask" in encoded_inputs: | 
					
					
						
						| 
							 | 
						                encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] | 
					
					
						
						| 
							 | 
						            if "position_ids" in encoded_inputs: | 
					
					
						
						| 
							 | 
						                encoded_inputs["position_ids"] = [0] * difference + encoded_inputs["position_ids"] | 
					
					
						
						| 
							 | 
						            encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return encoded_inputs | 
					
					
						
						| 
							 | 
						
 |