zRzRzRzRzRzRzR
commited on
Commit
·
ad148df
1
Parent(s):
57c1dd2
update
Browse files- README.md +60 -0
- config.json +479 -504
README.md
CHANGED
@@ -1,3 +1,63 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
- en
|
6 |
+
base_model:
|
7 |
+
- zai-org/GLM-4.5-Air-Base
|
8 |
+
pipeline_tag: image-text-to-text
|
9 |
+
library_name: transformers
|
10 |
---
|
11 |
+
|
12 |
+
# GLM-4.5V-FP8
|
13 |
+
|
14 |
+
<div align="center">
|
15 |
+
<img src=https://raw.githubusercontent.com/zai-org/GLM-V/refs/heads/main/resources/logo.svg width="40%"/>
|
16 |
+
</div>
|
17 |
+
<p align="center">
|
18 |
+
👋 Join our <a href="https://discord.com/invite/8cnQKdAprg" target="_blank">Discord</a> communities.
|
19 |
+
<br>
|
20 |
+
📖 Check out the <a href="https://arxiv.org/abs/2507.01006" target="_blank">paper</a>.
|
21 |
+
<br>
|
22 |
+
📍 Access the GLM-V series models via API on the <a href="https://docs.z.ai/guides/vlm/glm-4.5v">ZhipuAI Open Platform</a>.
|
23 |
+
</p>
|
24 |
+
|
25 |
+
## Introduction
|
26 |
+
|
27 |
+
Vision-language models (VLMs) have become a key cornerstone of intelligent systems. As real-world AI tasks grow increasingly complex, VLMs urgently need to enhance reasoning capabilities beyond basic multimodal perception — improving accuracy, comprehensiveness, and intelligence — to enable complex problem solving, long-context understanding, and multimodal agents.
|
28 |
+
|
29 |
+
Through our open-source work, we aim to explore the technological frontier together with the community while empowering more developers to create exciting and innovative applications.
|
30 |
+
|
31 |
+
GLM-4.5V is based on ZhipuAI’s next-generation flagship text foundation model GLM-4.5-Air (106B parameters, 12B active). It continues the technical approach of GLM-4.1V-Thinking, achieving SOTA performance among models of the same scale on 42 public vision-language benchmarks. It covers common tasks such as image, video, and document understanding, as well as GUI agent operations.
|
32 |
+
|
33 |
+

|
34 |
+
|
35 |
+
Beyond benchmark performance, GLM-4.5V focuses on real-world usability. Through efficient hybrid training, it can handle diverse types of visual content, enabling full-spectrum vision reasoning, including:
|
36 |
+
- **Image reasoning** (scene understanding, complex multi-image analysis, spatial recognition)
|
37 |
+
- **Video understanding** (long video segmentation and event recognition)
|
38 |
+
- **GUI tasks** (screen reading, icon recognition, desktop operation assistance)
|
39 |
+
- **Complex chart & long document parsing** (research report analysis, information extraction)
|
40 |
+
- **Grounding** (precise visual element localization)
|
41 |
+
|
42 |
+
The model also introduces a **Thinking Mode** switch, allowing users to balance between quick responses and deep reasoning. This switch works the same as in the `GLM-4.5` language model.
|
43 |
+
|
44 |
+
## Quick Start
|
45 |
+
|
46 |
+
For more code information, please visit our [GitHub](https://github.com/zai-org/GLM-V/).
|
47 |
+
|
48 |
+
## Citation
|
49 |
+
|
50 |
+
If you use this model, please cite the following paper:
|
51 |
+
|
52 |
+
```bibtex
|
53 |
+
@misc{glmvteam2025glm41vthinkingversatilemultimodalreasoning,
|
54 |
+
title={GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning with Scalable Reinforcement Learning},
|
55 |
+
author={GLM-V Team and Wenyi Hong and Wenmeng Yu and Xiaotao Gu and Guo Wang and Guobing Gan and Haomiao Tang and Jiale Cheng and Ji Qi and Junhui Ji and Lihang Pan and Shuaiqi Duan and Weihan Wang and Yan Wang and Yean Cheng and Zehai He and Zhe Su and Zhen Yang and Ziyang Pan and Aohan Zeng and Baoxu Wang and Boyan Shi and Changyu Pang and Chenhui Zhang and Da Yin and Fan Yang and Guoqing Chen and Jiazheng Xu and Jiali Chen and Jing Chen and Jinhao Chen and Jinghao Lin and Jinjiang Wang and Junjie Chen and Leqi Lei and Letian Gong and Leyi Pan and Mingzhi Zhang and Qinkai Zheng and Sheng Yang and Shi Zhong and Shiyu Huang and Shuyuan Zhao and Siyan Xue and Shangqin Tu and Shengbiao Meng and Tianshu Zhang and Tianwei Luo and Tianxiang Hao and Wenkai Li and Wei Jia and Xin Lyu and Xuancheng Huang and Yanling Wang and Yadong Xue and Yanfeng Wang and Yifan An and Yifan Du and Yiming Shi and Yiheng Huang and Yilin Niu and Yuan Wang and Yuanchang Yue and Yuchen Li and Yutao Zhang and Yuxuan Zhang and Zhanxiao Du and Zhenyu Hou and Zhao Xue and Zhengxiao Du and Zihan Wang and Peng Zhang and Debing Liu and Bin Xu and Juanzi Li and Minlie Huang and Yuxiao Dong and Jie Tang},
|
56 |
+
year={2025},
|
57 |
+
eprint={2507.01006},
|
58 |
+
archivePrefix={arXiv},
|
59 |
+
primaryClass={cs.CV},
|
60 |
+
url={https://arxiv.org/abs/2507.01006},
|
61 |
+
}
|
62 |
+
```
|
63 |
+
|
config.json
CHANGED
@@ -116,512 +116,487 @@
|
|
116 |
},
|
117 |
"format": "float-quantized",
|
118 |
"ignore": [
|
119 |
-
"model.
|
120 |
-
"model.
|
121 |
-
"model.
|
122 |
-
"model.
|
123 |
-
"model.
|
124 |
-
"model.
|
125 |
-
"model.
|
126 |
-
"model.
|
127 |
-
"model.
|
128 |
-
"model.
|
129 |
-
"
|
130 |
-
"
|
131 |
-
"
|
132 |
-
"
|
133 |
-
"
|
134 |
-
"
|
135 |
-
"model.
|
136 |
-
"model.
|
137 |
-
"model.
|
138 |
-
"model.
|
139 |
-
"model.
|
140 |
-
"model.
|
141 |
-
"model.
|
142 |
-
"model.
|
143 |
-
"model.
|
144 |
-
"model.
|
145 |
-
"model.
|
146 |
-
"model.
|
147 |
-
"model.
|
148 |
-
"model.
|
149 |
-
"model.
|
150 |
-
"model.
|
151 |
-
"model.
|
152 |
-
"model.
|
153 |
-
"model.
|
154 |
-
"model.
|
155 |
-
"model.
|
156 |
-
"model.
|
157 |
-
"model.
|
158 |
-
"model.
|
159 |
-
"model.
|
160 |
-
"model.
|
161 |
-
"model.
|
162 |
-
"model.
|
163 |
-
"model.
|
164 |
-
"model.
|
165 |
-
"model.
|
166 |
-
"model.
|
167 |
-
"model.
|
168 |
-
"model.
|
169 |
-
"model.
|
170 |
-
"model.
|
171 |
-
"model.
|
172 |
-
"model.
|
173 |
-
"model.
|
174 |
-
"model.
|
175 |
-
"model.
|
176 |
-
"model.
|
177 |
-
"model.
|
178 |
-
"model.
|
179 |
-
"model.
|
180 |
-
"model.
|
181 |
-
"model.
|
182 |
-
"model.
|
183 |
-
"model.
|
184 |
-
"model.
|
185 |
-
"model.
|
186 |
-
"model.
|
187 |
-
"model.
|
188 |
-
"model.
|
189 |
-
"model.
|
190 |
-
"model.
|
191 |
-
"model.
|
192 |
-
"model.
|
193 |
-
"model.
|
194 |
-
"model.
|
195 |
-
"
|
196 |
-
"
|
197 |
-
"
|
198 |
-
"
|
199 |
-
"
|
200 |
-
"
|
201 |
-
"
|
202 |
-
"
|
203 |
-
"
|
204 |
-
"
|
205 |
-
"
|
206 |
-
"model.
|
207 |
-
"model.
|
208 |
-
"model.
|
209 |
-
"model.
|
210 |
-
"model.
|
211 |
-
"model.
|
212 |
-
"model.
|
213 |
-
"model.
|
214 |
-
"model.
|
215 |
-
"model.
|
216 |
-
"
|
217 |
-
"
|
218 |
-
"
|
219 |
-
"
|
220 |
-
"
|
221 |
-
"
|
222 |
-
"
|
223 |
-
"
|
224 |
-
"
|
225 |
-
"
|
226 |
-
"model.
|
227 |
-
"model.
|
228 |
-
"model.
|
229 |
-
"model.
|
230 |
-
"model.
|
231 |
-
"model.
|
232 |
-
"model.
|
233 |
-
"model.
|
234 |
-
"model.
|
235 |
-
"model.
|
236 |
-
"model.
|
237 |
-
"model.
|
238 |
-
"model.
|
239 |
-
"model.
|
240 |
-
"model.
|
241 |
-
"model.
|
242 |
-
"model.
|
243 |
-
"
|
244 |
-
"
|
245 |
-
"
|
246 |
-
"
|
247 |
-
"
|
248 |
-
"
|
249 |
-
"
|
250 |
-
"model.
|
251 |
-
"model.
|
252 |
-
"model.
|
253 |
-
"model.
|
254 |
-
"
|
255 |
-
"
|
256 |
-
"model.
|
257 |
-
"model.
|
258 |
-
"model.
|
259 |
-
"
|
260 |
-
"
|
261 |
-
"
|
262 |
-
"
|
263 |
-
"
|
264 |
-
"model.
|
265 |
-
"model.
|
266 |
-
"model.
|
267 |
-
"model.
|
268 |
-
"model.
|
269 |
-
"model.
|
270 |
-
"model.
|
271 |
-
"model.
|
272 |
-
"model.
|
273 |
-
"model.
|
274 |
-
"model.
|
275 |
-
"model.
|
276 |
-
"model.
|
277 |
-
"model.
|
278 |
-
"model.
|
279 |
-
"model.
|
280 |
-
"model.
|
281 |
-
"model.
|
282 |
-
"model.
|
283 |
-
"model.
|
284 |
-
"model.
|
285 |
-
"
|
286 |
-
"
|
287 |
-
"
|
288 |
-
"
|
289 |
-
"
|
290 |
-
"
|
291 |
-
"
|
292 |
-
"model.
|
293 |
-
"model.
|
294 |
-
"model.
|
295 |
-
"model.
|
296 |
-
"model.
|
297 |
-
"model.
|
298 |
-
"model.
|
299 |
-
"model.
|
300 |
-
"model.
|
301 |
-
"model.
|
302 |
-
"model.
|
303 |
-
"model.
|
304 |
-
"model.
|
305 |
-
"model.
|
306 |
-
"model.
|
307 |
-
"model.
|
308 |
-
"model.
|
309 |
-
"model.
|
310 |
-
"model.
|
311 |
-
"model.
|
312 |
-
"model.
|
313 |
-
"model.
|
314 |
-
"model.
|
315 |
-
"model.
|
316 |
-
"model.
|
317 |
-
"model.
|
318 |
-
"model.
|
319 |
-
"model.
|
320 |
-
"model.
|
321 |
-
"model.
|
322 |
-
"model.
|
323 |
-
"model.
|
324 |
-
"model.
|
325 |
-
"model.
|
326 |
-
"model.
|
327 |
-
"model.
|
328 |
-
"model.
|
329 |
-
"model.
|
330 |
-
"model.
|
331 |
-
"model.
|
332 |
-
"model.
|
333 |
-
"model.
|
334 |
-
"model.
|
335 |
-
"model.
|
336 |
-
"model.
|
337 |
-
"model.
|
338 |
-
"model.
|
339 |
-
"model.
|
340 |
-
"model.
|
341 |
-
"model.
|
342 |
-
"model.
|
343 |
-
"model.
|
344 |
-
"model.
|
345 |
-
"model.
|
346 |
-
"model.
|
347 |
-
"model.
|
348 |
-
"model.
|
349 |
-
"model.
|
350 |
-
"model.
|
351 |
-
"model.
|
352 |
-
"model.
|
353 |
-
"model.
|
354 |
-
"model.
|
355 |
-
"model.
|
356 |
-
"model.
|
357 |
-
"
|
358 |
-
"
|
359 |
-
"
|
360 |
-
"
|
361 |
-
"
|
362 |
-
"
|
363 |
-
"
|
364 |
-
"
|
365 |
-
"
|
366 |
-
"
|
367 |
-
"
|
368 |
-
"
|
369 |
-
"
|
370 |
-
"
|
371 |
-
"
|
372 |
-
"
|
373 |
-
"
|
374 |
-
"
|
375 |
-
"
|
376 |
-
"
|
377 |
-
"
|
378 |
-
"
|
379 |
-
"
|
380 |
-
"
|
381 |
-
"
|
382 |
-
"
|
383 |
-
"
|
384 |
-
"
|
385 |
-
"
|
386 |
-
"
|
387 |
-
"
|
388 |
-
"
|
389 |
-
"
|
390 |
-
"model.
|
391 |
-
"model.
|
392 |
-
"model.
|
393 |
-
"
|
394 |
-
"model.
|
395 |
-
"model.
|
396 |
-
"model.
|
397 |
-
"model.
|
398 |
-
"model.
|
399 |
-
"model.
|
400 |
-
"model.
|
401 |
-
"model.
|
402 |
-
"model.
|
403 |
-
"model.
|
404 |
-
"model.
|
405 |
-
"model.
|
406 |
-
"model.
|
407 |
-
"model.
|
408 |
-
"model.
|
409 |
-
"model.
|
410 |
-
"model.
|
411 |
-
"model.
|
412 |
-
"model.
|
413 |
-
"model.
|
414 |
-
"model.
|
415 |
-
"model.
|
416 |
-
"model.
|
417 |
-
"
|
418 |
-
"model.
|
419 |
-
"model.
|
420 |
-
"model.
|
421 |
-
"model.
|
422 |
-
"model.
|
423 |
-
"model.
|
424 |
-
"model.
|
425 |
-
"model.
|
426 |
-
"model.
|
427 |
-
"model.
|
428 |
-
"model.language_model.layers.16.self_attn.k_proj.bias",
|
429 |
-
"model.language_model.layers.17.self_attn.k_proj.bias",
|
430 |
-
"model.language_model.layers.18.self_attn.k_proj.bias",
|
431 |
-
"model.language_model.layers.19.self_attn.k_proj.bias",
|
432 |
-
"model.visual.patch_embed.proj",
|
433 |
-
"model.language_model.layers.32.self_attn.k_proj.bias",
|
434 |
-
"model.language_model.layers.33.self_attn.k_proj.bias",
|
435 |
-
"model.language_model.layers.34.self_attn.k_proj.bias",
|
436 |
-
"model.language_model.layers.35.self_attn.k_proj.bias",
|
437 |
-
"model.language_model.layers.36.self_attn.k_proj.bias",
|
438 |
-
"model.language_model.layers.37.self_attn.k_proj.bias",
|
439 |
-
"model.language_model.layers.40.self_attn.k_proj.bias",
|
440 |
-
"model.language_model.layers.41.self_attn.k_proj.bias",
|
441 |
-
"model.language_model.layers.42.self_attn.k_proj.bias",
|
442 |
-
"model.language_model.layers.29.self_attn.k_proj.bias",
|
443 |
"lm_head",
|
444 |
-
"model.
|
445 |
-
"model.
|
446 |
-
"model.
|
447 |
-
"model.
|
448 |
-
"model.
|
449 |
-
"model.
|
450 |
-
"model.
|
451 |
-
"model.
|
452 |
-
"model.
|
453 |
-
"model.
|
454 |
-
"model.
|
455 |
-
"model.
|
456 |
-
"model.
|
457 |
-
"model.
|
458 |
-
"model.
|
459 |
-
"model.
|
460 |
-
"model.
|
461 |
-
"model.
|
462 |
-
"model.
|
463 |
-
"model.
|
464 |
-
"model.
|
465 |
-
"model.
|
466 |
-
"model.
|
467 |
-
"
|
468 |
-
"
|
469 |
-
"
|
470 |
-
"
|
471 |
-
"
|
472 |
-
"
|
473 |
-
"
|
474 |
-
"model.
|
475 |
-
"
|
476 |
-
"
|
477 |
-
"
|
478 |
-
"
|
479 |
-
"
|
480 |
-
"
|
481 |
-
"
|
482 |
-
"
|
483 |
-
"
|
484 |
-
"
|
485 |
-
"
|
486 |
-
"model.
|
487 |
-
"model.
|
488 |
-
"model.
|
489 |
-
"model.
|
490 |
-
"model.
|
491 |
-
"model.
|
492 |
-
"model.
|
493 |
-
"model.
|
494 |
-
"model.
|
495 |
-
"model.
|
496 |
-
"
|
497 |
-
"
|
498 |
-
"
|
499 |
-
"
|
500 |
-
"
|
501 |
-
"
|
502 |
-
"
|
503 |
-
"
|
504 |
-
"
|
505 |
-
"
|
506 |
-
"model.
|
507 |
-
"model.
|
508 |
-
"model.
|
509 |
-
"model.
|
510 |
-
"model.
|
511 |
-
"model.
|
512 |
-
"
|
513 |
-
"
|
514 |
-
"
|
515 |
-
"
|
516 |
-
"
|
517 |
-
"
|
518 |
-
"
|
519 |
-
"
|
520 |
-
"
|
521 |
-
"
|
522 |
-
"
|
523 |
-
"
|
524 |
-
"
|
525 |
-
"
|
526 |
-
"
|
527 |
-
"
|
528 |
-
"
|
529 |
-
"
|
530 |
-
"
|
531 |
-
"
|
532 |
-
"
|
533 |
-
"
|
534 |
-
"
|
535 |
-
"
|
536 |
-
"
|
537 |
-
"
|
538 |
-
"
|
539 |
-
"
|
540 |
-
"
|
541 |
-
"
|
542 |
-
"
|
543 |
-
"
|
544 |
-
"
|
545 |
-
"
|
546 |
-
"
|
547 |
-
"
|
548 |
-
"
|
549 |
-
"
|
550 |
-
"
|
551 |
-
"
|
552 |
-
"
|
553 |
-
"
|
554 |
-
"
|
555 |
-
"
|
556 |
-
"model.
|
557 |
-
"model.
|
558 |
-
"model.
|
559 |
-
"model.
|
560 |
-
"model.
|
561 |
-
"model.
|
562 |
-
"model.
|
563 |
-
"model.
|
564 |
-
"model.
|
565 |
-
"model.
|
566 |
-
"model.
|
567 |
-
"model.
|
568 |
-
"model.
|
569 |
-
"model.
|
570 |
-
"model.
|
571 |
-
"model.
|
572 |
-
"model.
|
573 |
-
"model.
|
574 |
-
"model.
|
575 |
-
"model.
|
576 |
-
"model.
|
577 |
-
"model.
|
578 |
-
"model.
|
579 |
-
"model.
|
580 |
-
"model.
|
581 |
-
"model.
|
582 |
-
"model.
|
583 |
-
"model.
|
584 |
-
"model.
|
585 |
-
"model.
|
586 |
-
"model.
|
587 |
-
"model.
|
588 |
-
"model.
|
589 |
-
"model.
|
590 |
-
"model.
|
591 |
-
"model.
|
592 |
-
"model.
|
593 |
-
"model.
|
594 |
-
"model.
|
595 |
-
"model.
|
596 |
-
"model.
|
597 |
-
"model.
|
598 |
-
"model.
|
599 |
-
"model.
|
600 |
-
"model.
|
601 |
-
"model.
|
602 |
-
"model.
|
603 |
-
"model.
|
604 |
-
"model.
|
605 |
-
"model.
|
606 |
-
"model.
|
607 |
-
"model.
|
608 |
-
"model.
|
609 |
-
"model.
|
610 |
-
"model.
|
611 |
-
"model.
|
612 |
-
"
|
613 |
-
"model.language_model.layers.4.post_attention_layernorm",
|
614 |
-
"model.language_model.layers.3.post_attention_layernorm",
|
615 |
-
"model.language_model.layers.0.post_attention_layernorm",
|
616 |
-
"model.language_model.layers.1.post_attention_layernorm",
|
617 |
-
"model.language_model.layers.8.post_attention_layernorm",
|
618 |
-
"model.language_model.layers.6.post_attention_layernorm",
|
619 |
-
"model.language_model.layers.7.post_attention_layernorm",
|
620 |
-
"model.language_model.layers.5.post_attention_layernorm",
|
621 |
-
"model.language_model.layers.9.post_attention_layernorm",
|
622 |
-
"model.visual.downsample"
|
623 |
],
|
624 |
"quant_method": "compressed-tensors",
|
625 |
"quantization_status": "compressed"
|
626 |
}
|
627 |
-
}
|
|
|
116 |
},
|
117 |
"format": "float-quantized",
|
118 |
"ignore": [
|
119 |
+
"model.layers.4.input_layernorm",
|
120 |
+
"model.layers.3.input_layernorm",
|
121 |
+
"model.layers.2.input_layernorm",
|
122 |
+
"model.layers.0.input_layernorm",
|
123 |
+
"model.layers.1.input_layernorm",
|
124 |
+
"model.layers.8.input_layernorm",
|
125 |
+
"model.layers.6.input_layernorm",
|
126 |
+
"model.layers.7.input_layernorm",
|
127 |
+
"model.layers.5.input_layernorm",
|
128 |
+
"model.layers.9.input_layernorm",
|
129 |
+
"visual.blocks.6.norm1",
|
130 |
+
"visual.blocks.7.norm1",
|
131 |
+
"visual.blocks.8.norm1",
|
132 |
+
"visual.blocks.9.norm1",
|
133 |
+
"visual.patch_embed.proj.bias",
|
134 |
+
"visual.downsample.bias",
|
135 |
+
"model.layers.38.mlp.gate",
|
136 |
+
"model.layers.39.mlp.gate",
|
137 |
+
"model.layers.40.mlp.gate",
|
138 |
+
"model.layers.41.mlp.gate",
|
139 |
+
"model.layers.42.mlp.gate",
|
140 |
+
"model.layers.28.mlp.gate",
|
141 |
+
"model.layers.29.mlp.gate",
|
142 |
+
"model.layers.30.mlp.gate",
|
143 |
+
"model.layers.31.mlp.gate",
|
144 |
+
"model.layers.32.mlp.gate",
|
145 |
+
"model.layers.31.self_attn.q_proj.bias",
|
146 |
+
"model.layers.32.self_attn.q_proj.bias",
|
147 |
+
"model.layers.33.self_attn.q_proj.bias",
|
148 |
+
"model.layers.43.self_attn.q_proj.bias",
|
149 |
+
"model.layers.44.self_attn.q_proj.bias",
|
150 |
+
"model.layers.45.self_attn.q_proj.bias",
|
151 |
+
"model.layers.20.self_attn.q_proj.bias",
|
152 |
+
"model.layers.22.self_attn.q_proj.bias",
|
153 |
+
"model.layers.21.self_attn.q_proj.bias",
|
154 |
+
"model.layers.23.self_attn.q_proj.bias",
|
155 |
+
"model.layers.10.self_attn.q_proj.bias",
|
156 |
+
"model.layers.11.self_attn.q_proj.bias",
|
157 |
+
"model.layers.12.self_attn.q_proj.bias",
|
158 |
+
"model.layers.14.self_attn.q_proj.bias",
|
159 |
+
"model.layers.38.self_attn.q_proj.bias",
|
160 |
+
"model.layers.39.self_attn.q_proj.bias",
|
161 |
+
"model.layers.37.post_attention_layernorm",
|
162 |
+
"model.layers.38.post_attention_layernorm",
|
163 |
+
"model.layers.39.post_attention_layernorm",
|
164 |
+
"model.layers.20.post_attention_layernorm",
|
165 |
+
"model.layers.22.post_attention_layernorm",
|
166 |
+
"model.layers.21.post_attention_layernorm",
|
167 |
+
"model.layers.23.post_attention_layernorm",
|
168 |
+
"model.layers.24.post_attention_layernorm",
|
169 |
+
"model.layers.25.post_attention_layernorm",
|
170 |
+
"model.layers.26.post_attention_layernorm",
|
171 |
+
"model.layers.43.self_attn.k_proj.bias",
|
172 |
+
"model.layers.44.self_attn.k_proj.bias",
|
173 |
+
"model.layers.45.self_attn.k_proj.bias",
|
174 |
+
"model.layers.5.self_attn.v_proj.bias",
|
175 |
+
"model.layers.9.self_attn.v_proj.bias",
|
176 |
+
"model.layers.33.mlp.gate",
|
177 |
+
"model.layers.34.mlp.gate",
|
178 |
+
"model.layers.35.mlp.gate",
|
179 |
+
"model.layers.36.mlp.gate",
|
180 |
+
"model.layers.37.mlp.gate",
|
181 |
+
"model.layers.10.mlp.gate",
|
182 |
+
"model.layers.11.mlp.gate",
|
183 |
+
"model.layers.12.mlp.gate",
|
184 |
+
"model.layers.14.mlp.gate",
|
185 |
+
"model.layers.13.mlp.gate",
|
186 |
+
"model.layers.6.mlp.gate",
|
187 |
+
"model.layers.7.mlp.gate",
|
188 |
+
"model.layers.5.mlp.gate",
|
189 |
+
"model.layers.3.mlp.gate",
|
190 |
+
"model.layers.2.mlp.gate",
|
191 |
+
"model.layers.4.mlp.gate",
|
192 |
+
"model.layers.1.mlp.gate",
|
193 |
+
"model.layers.8.mlp.gate",
|
194 |
+
"model.layers.9.mlp.gate",
|
195 |
+
"visual.blocks.15.mlp.gate_up_proj",
|
196 |
+
"visual.blocks.16.mlp.down_proj",
|
197 |
+
"visual.blocks.16.mlp.gate_up_proj",
|
198 |
+
"visual.blocks.17.mlp.down_proj",
|
199 |
+
"visual.blocks.17.mlp.gate_up_proj",
|
200 |
+
"visual.blocks.18.mlp.down_proj",
|
201 |
+
"visual.blocks.18.mlp.gate_up_proj",
|
202 |
+
"visual.blocks.19.mlp.down_proj",
|
203 |
+
"visual.blocks.19.mlp.gate_up_proj",
|
204 |
+
"visual.blocks.20.mlp.down_proj",
|
205 |
+
"visual.post_layernorm",
|
206 |
+
"model.layers.40.mlp.gate.e_score_correction_bias",
|
207 |
+
"model.layers.41.mlp.gate.e_score_correction_bias",
|
208 |
+
"model.layers.42.mlp.gate.e_score_correction_bias",
|
209 |
+
"model.layers.29.mlp.gate.e_score_correction_bias",
|
210 |
+
"model.layers.30.mlp.gate.e_score_correction_bias",
|
211 |
+
"model.layers.31.mlp.gate.e_score_correction_bias",
|
212 |
+
"model.layers.32.mlp.gate.e_score_correction_bias",
|
213 |
+
"model.layers.33.mlp.gate.e_score_correction_bias",
|
214 |
+
"model.layers.34.mlp.gate.e_score_correction_bias",
|
215 |
+
"model.layers.35.mlp.gate.e_score_correction_bias",
|
216 |
+
"visual.blocks.12.norm1",
|
217 |
+
"visual.blocks.12.norm2",
|
218 |
+
"visual.blocks.13.norm1",
|
219 |
+
"visual.blocks.13.norm2",
|
220 |
+
"visual.blocks.14.norm1",
|
221 |
+
"visual.blocks.14.norm2",
|
222 |
+
"visual.blocks.15.norm1",
|
223 |
+
"visual.blocks.15.norm2",
|
224 |
+
"visual.blocks.16.norm2",
|
225 |
+
"visual.blocks.17.norm2",
|
226 |
+
"model.layers.45.mlp.gate.e_score_correction_bias",
|
227 |
+
"model.layers.17.post_attention_layernorm",
|
228 |
+
"model.layers.18.post_attention_layernorm",
|
229 |
+
"model.layers.19.post_attention_layernorm",
|
230 |
+
"model.layers.43.post_attention_layernorm",
|
231 |
+
"model.layers.44.post_attention_layernorm",
|
232 |
+
"model.layers.45.post_attention_layernorm",
|
233 |
+
"model.layers.20.self_attn.v_proj.bias",
|
234 |
+
"model.layers.22.self_attn.v_proj.bias",
|
235 |
+
"model.layers.21.self_attn.v_proj.bias",
|
236 |
+
"model.layers.23.self_attn.v_proj.bias",
|
237 |
+
"model.layers.24.self_attn.v_proj.bias",
|
238 |
+
"model.layers.25.self_attn.v_proj.bias",
|
239 |
+
"model.layers.26.self_attn.v_proj.bias",
|
240 |
+
"model.layers.27.self_attn.v_proj.bias",
|
241 |
+
"model.layers.28.self_attn.v_proj.bias",
|
242 |
+
"model.layers.29.self_attn.v_proj.bias",
|
243 |
+
"visual.blocks.11.mlp.gate_up_proj",
|
244 |
+
"visual.blocks.5.mlp.gate_up_proj",
|
245 |
+
"visual.blocks.5.norm1",
|
246 |
+
"visual.blocks.6.mlp.gate_up_proj",
|
247 |
+
"visual.blocks.7.mlp.gate_up_proj",
|
248 |
+
"visual.blocks.8.mlp.gate_up_proj",
|
249 |
+
"visual.blocks.9.mlp.gate_up_proj",
|
250 |
+
"model.layers.22.mlp.gate.e_score_correction_bias",
|
251 |
+
"model.layers.10.mlp.gate.e_score_correction_bias",
|
252 |
+
"model.layers.11.mlp.gate.e_score_correction_bias",
|
253 |
+
"model.layers.12.mlp.gate.e_score_correction_bias",
|
254 |
+
"visual.blocks.12.mlp.down_proj",
|
255 |
+
"visual.blocks.12.mlp.gate_up_proj",
|
256 |
+
"model.layers.14.mlp.gate.e_score_correction_bias",
|
257 |
+
"model.layers.13.mlp.gate.e_score_correction_bias",
|
258 |
+
"model.layers.15.mlp.gate.e_score_correction_bias",
|
259 |
+
"visual.blocks.13.mlp.down_proj",
|
260 |
+
"visual.blocks.13.mlp.gate_up_proj",
|
261 |
+
"visual.blocks.14.mlp.down_proj",
|
262 |
+
"visual.blocks.14.mlp.gate_up_proj",
|
263 |
+
"visual.blocks.15.mlp.down_proj",
|
264 |
+
"model.embed_tokens",
|
265 |
+
"model.layers.10.input_layernorm",
|
266 |
+
"model.layers.11.input_layernorm",
|
267 |
+
"model.layers.12.input_layernorm",
|
268 |
+
"model.layers.14.input_layernorm",
|
269 |
+
"model.layers.39.input_layernorm",
|
270 |
+
"model.layers.13.input_layernorm",
|
271 |
+
"model.layers.15.input_layernorm",
|
272 |
+
"model.layers.16.input_layernorm",
|
273 |
+
"model.layers.17.input_layernorm",
|
274 |
+
"model.layers.18.input_layernorm",
|
275 |
+
"model.layers.27.post_attention_layernorm",
|
276 |
+
"model.layers.28.post_attention_layernorm",
|
277 |
+
"model.layers.29.post_attention_layernorm",
|
278 |
+
"model.layers.10.post_attention_layernorm",
|
279 |
+
"model.layers.11.post_attention_layernorm",
|
280 |
+
"model.layers.12.post_attention_layernorm",
|
281 |
+
"model.layers.14.post_attention_layernorm",
|
282 |
+
"model.layers.13.post_attention_layernorm",
|
283 |
+
"model.layers.15.post_attention_layernorm",
|
284 |
+
"model.layers.16.post_attention_layernorm",
|
285 |
+
"visual.blocks.19.norm2",
|
286 |
+
"visual.blocks.20.norm2",
|
287 |
+
"visual.blocks.21.norm2",
|
288 |
+
"visual.blocks.22.norm2",
|
289 |
+
"visual.blocks.23.norm2",
|
290 |
+
"visual.blocks.10.norm2",
|
291 |
+
"visual.blocks.11.norm2",
|
292 |
+
"model.layers.2.mlp.gate.e_score_correction_bias",
|
293 |
+
"model.layers.4.mlp.gate.e_score_correction_bias",
|
294 |
+
"model.layers.3.mlp.gate.e_score_correction_bias",
|
295 |
+
"model.layers.1.mlp.gate.e_score_correction_bias",
|
296 |
+
"model.layers.8.mlp.gate.e_score_correction_bias",
|
297 |
+
"model.layers.6.mlp.gate.e_score_correction_bias",
|
298 |
+
"model.layers.7.mlp.gate.e_score_correction_bias",
|
299 |
+
"model.layers.5.mlp.gate.e_score_correction_bias",
|
300 |
+
"model.layers.9.mlp.gate.e_score_correction_bias",
|
301 |
+
"model.layers.2.self_attn.k_proj.bias",
|
302 |
+
"model.layers.4.self_attn.k_proj.bias",
|
303 |
+
"model.layers.3.self_attn.k_proj.bias",
|
304 |
+
"model.layers.0.self_attn.k_proj.bias",
|
305 |
+
"model.layers.1.self_attn.k_proj.bias",
|
306 |
+
"model.layers.8.self_attn.k_proj.bias",
|
307 |
+
"model.layers.6.self_attn.k_proj.bias",
|
308 |
+
"model.layers.7.self_attn.k_proj.bias",
|
309 |
+
"model.layers.5.self_attn.k_proj.bias",
|
310 |
+
"model.layers.9.self_attn.k_proj.bias",
|
311 |
+
"model.layers.34.self_attn.q_proj.bias",
|
312 |
+
"model.layers.35.self_attn.q_proj.bias",
|
313 |
+
"model.layers.36.self_attn.q_proj.bias",
|
314 |
+
"model.layers.37.self_attn.q_proj.bias",
|
315 |
+
"model.layers.13.self_attn.q_proj.bias",
|
316 |
+
"model.layers.15.self_attn.q_proj.bias",
|
317 |
+
"model.layers.16.self_attn.q_proj.bias",
|
318 |
+
"model.layers.17.self_attn.q_proj.bias",
|
319 |
+
"model.layers.18.self_attn.q_proj.bias",
|
320 |
+
"model.layers.19.self_attn.q_proj.bias",
|
321 |
+
"model.layers.40.self_attn.q_proj.bias",
|
322 |
+
"model.layers.41.self_attn.q_proj.bias",
|
323 |
+
"model.layers.42.self_attn.q_proj.bias",
|
324 |
+
"model.layers.24.self_attn.q_proj.bias",
|
325 |
+
"model.layers.25.self_attn.q_proj.bias",
|
326 |
+
"model.layers.26.self_attn.q_proj.bias",
|
327 |
+
"model.layers.27.self_attn.q_proj.bias",
|
328 |
+
"model.layers.28.self_attn.q_proj.bias",
|
329 |
+
"model.layers.29.self_attn.q_proj.bias",
|
330 |
+
"model.layers.30.self_attn.q_proj.bias",
|
331 |
+
"model.layers.25.mlp.gate.e_score_correction_bias",
|
332 |
+
"model.layers.26.mlp.gate.e_score_correction_bias",
|
333 |
+
"model.layers.27.mlp.gate.e_score_correction_bias",
|
334 |
+
"model.layers.28.mlp.gate.e_score_correction_bias",
|
335 |
+
"model.layers.39.mlp.gate.e_score_correction_bias",
|
336 |
+
"model.layers.16.mlp.gate.e_score_correction_bias",
|
337 |
+
"model.layers.17.mlp.gate.e_score_correction_bias",
|
338 |
+
"model.layers.18.mlp.gate.e_score_correction_bias",
|
339 |
+
"model.layers.19.mlp.gate.e_score_correction_bias",
|
340 |
+
"model.layers.20.mlp.gate.e_score_correction_bias",
|
341 |
+
"model.layers.36.mlp.gate.e_score_correction_bias",
|
342 |
+
"model.layers.37.mlp.gate.e_score_correction_bias",
|
343 |
+
"model.layers.38.mlp.gate.e_score_correction_bias",
|
344 |
+
"model.layers.21.mlp.gate.e_score_correction_bias",
|
345 |
+
"model.layers.23.mlp.gate.e_score_correction_bias",
|
346 |
+
"model.layers.24.mlp.gate.e_score_correction_bias",
|
347 |
+
"model.layers.22.self_attn.k_proj.bias",
|
348 |
+
"model.layers.21.self_attn.k_proj.bias",
|
349 |
+
"model.layers.23.self_attn.k_proj.bias",
|
350 |
+
"model.layers.24.self_attn.k_proj.bias",
|
351 |
+
"model.layers.25.self_attn.k_proj.bias",
|
352 |
+
"model.layers.26.self_attn.k_proj.bias",
|
353 |
+
"model.layers.27.self_attn.k_proj.bias",
|
354 |
+
"model.layers.28.self_attn.k_proj.bias",
|
355 |
+
"model.layers.38.self_attn.k_proj.bias",
|
356 |
+
"model.layers.39.self_attn.k_proj.bias",
|
357 |
+
"visual.blocks.0.norm1",
|
358 |
+
"visual.blocks.1.norm1",
|
359 |
+
"visual.blocks.2.norm1",
|
360 |
+
"visual.blocks.0.norm2",
|
361 |
+
"visual.blocks.1.norm2",
|
362 |
+
"visual.blocks.2.norm2",
|
363 |
+
"visual.blocks.3.norm1",
|
364 |
+
"visual.blocks.3.norm2",
|
365 |
+
"visual.blocks.4.norm1",
|
366 |
+
"visual.blocks.19.attn.qkv_proj",
|
367 |
+
"visual.blocks.20.attn.qkv_proj",
|
368 |
+
"visual.blocks.21.attn.qkv_proj",
|
369 |
+
"visual.blocks.22.attn.qkv_proj",
|
370 |
+
"visual.blocks.23.attn.qkv_proj",
|
371 |
+
"visual.blocks.10.attn.qkv_proj",
|
372 |
+
"visual.blocks.11.attn.qkv_proj",
|
373 |
+
"visual.blocks.4.norm2",
|
374 |
+
"visual.blocks.5.norm2",
|
375 |
+
"visual.blocks.6.norm2",
|
376 |
+
"visual.blocks.7.norm2",
|
377 |
+
"visual.blocks.8.norm2",
|
378 |
+
"visual.blocks.9.norm2",
|
379 |
+
"visual.blocks.20.mlp.gate_up_proj",
|
380 |
+
"visual.blocks.21.mlp.down_proj",
|
381 |
+
"visual.blocks.21.mlp.gate_up_proj",
|
382 |
+
"visual.blocks.22.mlp.down_proj",
|
383 |
+
"visual.blocks.22.mlp.gate_up_proj",
|
384 |
+
"visual.blocks.23.mlp.down_proj",
|
385 |
+
"visual.blocks.23.mlp.gate_up_proj",
|
386 |
+
"visual.blocks.10.mlp.down_proj",
|
387 |
+
"visual.blocks.10.mlp.gate_up_proj",
|
388 |
+
"visual.blocks.11.mlp.down_proj",
|
389 |
+
"visual.embeddings.position_embedding",
|
390 |
+
"model.layers.15.mlp.gate",
|
391 |
+
"model.layers.16.mlp.gate",
|
392 |
+
"model.layers.17.mlp.gate",
|
393 |
+
"visual.merger.proj",
|
394 |
+
"model.layers.43.mlp.gate",
|
395 |
+
"model.layers.44.mlp.gate",
|
396 |
+
"model.layers.45.mlp.gate",
|
397 |
+
"model.layers.32.input_layernorm",
|
398 |
+
"model.layers.33.input_layernorm",
|
399 |
+
"model.layers.34.input_layernorm",
|
400 |
+
"model.layers.35.input_layernorm",
|
401 |
+
"model.layers.36.input_layernorm",
|
402 |
+
"model.layers.37.input_layernorm",
|
403 |
+
"model.layers.38.input_layernorm",
|
404 |
+
"model.layers.40.input_layernorm",
|
405 |
+
"model.layers.41.input_layernorm",
|
406 |
+
"model.layers.42.input_layernorm",
|
407 |
+
"model.layers.10.self_attn.k_proj.bias",
|
408 |
+
"model.layers.11.self_attn.k_proj.bias",
|
409 |
+
"model.layers.12.self_attn.k_proj.bias",
|
410 |
+
"model.layers.14.self_attn.k_proj.bias",
|
411 |
+
"model.layers.13.self_attn.k_proj.bias",
|
412 |
+
"model.layers.15.self_attn.k_proj.bias",
|
413 |
+
"model.layers.16.self_attn.k_proj.bias",
|
414 |
+
"model.layers.17.self_attn.k_proj.bias",
|
415 |
+
"model.layers.18.self_attn.k_proj.bias",
|
416 |
+
"model.layers.19.self_attn.k_proj.bias",
|
417 |
+
"visual.patch_embed.proj",
|
418 |
+
"model.layers.32.self_attn.k_proj.bias",
|
419 |
+
"model.layers.33.self_attn.k_proj.bias",
|
420 |
+
"model.layers.34.self_attn.k_proj.bias",
|
421 |
+
"model.layers.35.self_attn.k_proj.bias",
|
422 |
+
"model.layers.36.self_attn.k_proj.bias",
|
423 |
+
"model.layers.37.self_attn.k_proj.bias",
|
424 |
+
"model.layers.40.self_attn.k_proj.bias",
|
425 |
+
"model.layers.41.self_attn.k_proj.bias",
|
426 |
+
"model.layers.42.self_attn.k_proj.bias",
|
427 |
+
"model.layers.29.self_attn.k_proj.bias",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
428 |
"lm_head",
|
429 |
+
"model.layers.40.post_attention_layernorm",
|
430 |
+
"model.layers.41.post_attention_layernorm",
|
431 |
+
"model.layers.42.post_attention_layernorm",
|
432 |
+
"model.layers.30.post_attention_layernorm",
|
433 |
+
"model.layers.31.post_attention_layernorm",
|
434 |
+
"model.layers.32.post_attention_layernorm",
|
435 |
+
"model.layers.33.post_attention_layernorm",
|
436 |
+
"model.layers.34.post_attention_layernorm",
|
437 |
+
"model.layers.35.post_attention_layernorm",
|
438 |
+
"model.layers.36.post_attention_layernorm",
|
439 |
+
"model.layers.30.self_attn.k_proj.bias",
|
440 |
+
"model.layers.31.self_attn.k_proj.bias",
|
441 |
+
"model.layers.20.self_attn.k_proj.bias",
|
442 |
+
"model.layers.21.input_layernorm",
|
443 |
+
"model.layers.23.input_layernorm",
|
444 |
+
"model.layers.24.input_layernorm",
|
445 |
+
"model.layers.25.input_layernorm",
|
446 |
+
"model.layers.26.input_layernorm",
|
447 |
+
"model.layers.27.input_layernorm",
|
448 |
+
"model.layers.28.input_layernorm",
|
449 |
+
"model.layers.29.input_layernorm",
|
450 |
+
"model.layers.30.input_layernorm",
|
451 |
+
"model.layers.31.input_layernorm",
|
452 |
+
"visual.blocks.22.attn.proj",
|
453 |
+
"visual.blocks.23.attn.proj",
|
454 |
+
"visual.blocks.10.attn.proj",
|
455 |
+
"visual.blocks.11.attn.proj",
|
456 |
+
"visual.merger.down_proj",
|
457 |
+
"visual.merger.gate_up_proj",
|
458 |
+
"visual.merger.post_projection_norm.bias",
|
459 |
+
"model.norm",
|
460 |
+
"visual.blocks.16.norm1",
|
461 |
+
"visual.blocks.17.norm1",
|
462 |
+
"visual.blocks.18.norm1",
|
463 |
+
"visual.blocks.19.norm1",
|
464 |
+
"visual.blocks.20.norm1",
|
465 |
+
"visual.blocks.21.norm1",
|
466 |
+
"visual.blocks.22.norm1",
|
467 |
+
"visual.blocks.23.norm1",
|
468 |
+
"visual.blocks.10.norm1",
|
469 |
+
"visual.blocks.11.norm1",
|
470 |
+
"visual.blocks.18.norm2",
|
471 |
+
"model.layers.10.self_attn.v_proj.bias",
|
472 |
+
"model.layers.11.self_attn.v_proj.bias",
|
473 |
+
"model.layers.12.self_attn.v_proj.bias",
|
474 |
+
"model.layers.14.self_attn.v_proj.bias",
|
475 |
+
"model.layers.13.self_attn.v_proj.bias",
|
476 |
+
"model.layers.15.self_attn.v_proj.bias",
|
477 |
+
"model.layers.16.self_attn.v_proj.bias",
|
478 |
+
"model.layers.17.self_attn.v_proj.bias",
|
479 |
+
"model.layers.18.self_attn.v_proj.bias",
|
480 |
+
"model.layers.19.self_attn.v_proj.bias",
|
481 |
+
"visual.blocks.0.attn.qkv_proj",
|
482 |
+
"visual.blocks.1.attn.qkv_proj",
|
483 |
+
"visual.blocks.2.attn.qkv_proj",
|
484 |
+
"visual.blocks.3.attn.qkv_proj",
|
485 |
+
"visual.blocks.4.attn.qkv_proj",
|
486 |
+
"visual.blocks.5.attn.qkv_proj",
|
487 |
+
"visual.blocks.6.attn.qkv_proj",
|
488 |
+
"visual.blocks.7.attn.qkv_proj",
|
489 |
+
"visual.blocks.8.attn.qkv_proj",
|
490 |
+
"visual.blocks.9.attn.qkv_proj",
|
491 |
+
"model.layers.31.self_attn.v_proj.bias",
|
492 |
+
"model.layers.32.self_attn.v_proj.bias",
|
493 |
+
"model.layers.33.self_attn.v_proj.bias",
|
494 |
+
"model.layers.43.self_attn.v_proj.bias",
|
495 |
+
"model.layers.44.self_attn.v_proj.bias",
|
496 |
+
"model.layers.45.self_attn.v_proj.bias",
|
497 |
+
"visual.post_conv_layernorm",
|
498 |
+
"visual.blocks.0.mlp.down_proj",
|
499 |
+
"visual.blocks.0.mlp.gate_up_proj",
|
500 |
+
"visual.blocks.1.mlp.down_proj",
|
501 |
+
"visual.blocks.1.mlp.gate_up_proj",
|
502 |
+
"visual.blocks.2.mlp.down_proj",
|
503 |
+
"visual.blocks.2.mlp.gate_up_proj",
|
504 |
+
"visual.blocks.3.mlp.down_proj",
|
505 |
+
"visual.blocks.3.mlp.gate_up_proj",
|
506 |
+
"visual.blocks.4.mlp.down_proj",
|
507 |
+
"visual.blocks.4.mlp.gate_up_proj",
|
508 |
+
"visual.merger.post_projection_norm",
|
509 |
+
"visual.blocks.12.attn.proj",
|
510 |
+
"visual.blocks.13.attn.proj",
|
511 |
+
"visual.blocks.14.attn.proj",
|
512 |
+
"visual.blocks.15.attn.proj",
|
513 |
+
"visual.blocks.16.attn.proj",
|
514 |
+
"visual.blocks.17.attn.proj",
|
515 |
+
"visual.blocks.18.attn.proj",
|
516 |
+
"visual.blocks.19.attn.proj",
|
517 |
+
"visual.blocks.20.attn.proj",
|
518 |
+
"visual.blocks.21.attn.proj",
|
519 |
+
"visual.blocks.5.mlp.down_proj",
|
520 |
+
"visual.blocks.6.mlp.down_proj",
|
521 |
+
"visual.blocks.7.mlp.down_proj",
|
522 |
+
"visual.blocks.8.mlp.down_proj",
|
523 |
+
"visual.blocks.9.mlp.down_proj",
|
524 |
+
"visual.blocks.0.attn.proj",
|
525 |
+
"visual.blocks.1.attn.proj",
|
526 |
+
"visual.blocks.2.attn.proj",
|
527 |
+
"visual.blocks.3.attn.proj",
|
528 |
+
"visual.blocks.4.attn.proj",
|
529 |
+
"visual.blocks.5.attn.proj",
|
530 |
+
"visual.blocks.6.attn.proj",
|
531 |
+
"visual.blocks.7.attn.proj",
|
532 |
+
"visual.blocks.8.attn.proj",
|
533 |
+
"visual.blocks.9.attn.proj",
|
534 |
+
"visual.blocks.12.attn.qkv_proj",
|
535 |
+
"visual.blocks.13.attn.qkv_proj",
|
536 |
+
"visual.blocks.14.attn.qkv_proj",
|
537 |
+
"visual.blocks.15.attn.qkv_proj",
|
538 |
+
"visual.blocks.16.attn.qkv_proj",
|
539 |
+
"visual.blocks.17.attn.qkv_proj",
|
540 |
+
"visual.blocks.18.attn.qkv_proj",
|
541 |
+
"model.layers.34.self_attn.v_proj.bias",
|
542 |
+
"model.layers.35.self_attn.v_proj.bias",
|
543 |
+
"model.layers.36.self_attn.v_proj.bias",
|
544 |
+
"model.layers.37.self_attn.v_proj.bias",
|
545 |
+
"model.layers.38.self_attn.v_proj.bias",
|
546 |
+
"model.layers.39.self_attn.v_proj.bias",
|
547 |
+
"model.layers.40.self_attn.v_proj.bias",
|
548 |
+
"model.layers.41.self_attn.v_proj.bias",
|
549 |
+
"model.layers.42.self_attn.v_proj.bias",
|
550 |
+
"model.layers.30.self_attn.v_proj.bias",
|
551 |
+
"model.layers.2.self_attn.q_proj.bias",
|
552 |
+
"model.layers.4.self_attn.q_proj.bias",
|
553 |
+
"model.layers.3.self_attn.q_proj.bias",
|
554 |
+
"model.layers.0.self_attn.q_proj.bias",
|
555 |
+
"model.layers.1.self_attn.q_proj.bias",
|
556 |
+
"model.layers.8.self_attn.q_proj.bias",
|
557 |
+
"model.layers.6.self_attn.q_proj.bias",
|
558 |
+
"model.layers.7.self_attn.q_proj.bias",
|
559 |
+
"model.layers.5.self_attn.q_proj.bias",
|
560 |
+
"model.layers.9.self_attn.q_proj.bias",
|
561 |
+
"model.layers.2.self_attn.v_proj.bias",
|
562 |
+
"model.layers.4.self_attn.v_proj.bias",
|
563 |
+
"model.layers.3.self_attn.v_proj.bias",
|
564 |
+
"model.layers.0.self_attn.v_proj.bias",
|
565 |
+
"model.layers.1.self_attn.v_proj.bias",
|
566 |
+
"model.layers.8.self_attn.v_proj.bias",
|
567 |
+
"model.layers.6.self_attn.v_proj.bias",
|
568 |
+
"model.layers.7.self_attn.v_proj.bias",
|
569 |
+
"model.layers.18.mlp.gate",
|
570 |
+
"model.layers.19.mlp.gate",
|
571 |
+
"model.layers.20.mlp.gate",
|
572 |
+
"model.layers.22.mlp.gate",
|
573 |
+
"model.layers.21.mlp.gate",
|
574 |
+
"model.layers.23.mlp.gate",
|
575 |
+
"model.layers.24.mlp.gate",
|
576 |
+
"model.layers.25.mlp.gate",
|
577 |
+
"model.layers.26.mlp.gate",
|
578 |
+
"model.layers.27.mlp.gate",
|
579 |
+
"model.layers.43.mlp.gate.e_score_correction_bias",
|
580 |
+
"model.layers.44.mlp.gate.e_score_correction_bias",
|
581 |
+
"model.layers.19.input_layernorm",
|
582 |
+
"model.layers.20.input_layernorm",
|
583 |
+
"model.layers.22.input_layernorm",
|
584 |
+
"model.layers.43.input_layernorm",
|
585 |
+
"model.layers.44.input_layernorm",
|
586 |
+
"model.layers.45.input_layernorm",
|
587 |
+
"model.layers.2.post_attention_layernorm",
|
588 |
+
"model.layers.4.post_attention_layernorm",
|
589 |
+
"model.layers.3.post_attention_layernorm",
|
590 |
+
"model.layers.0.post_attention_layernorm",
|
591 |
+
"model.layers.1.post_attention_layernorm",
|
592 |
+
"model.layers.8.post_attention_layernorm",
|
593 |
+
"model.layers.6.post_attention_layernorm",
|
594 |
+
"model.layers.7.post_attention_layernorm",
|
595 |
+
"model.layers.5.post_attention_layernorm",
|
596 |
+
"model.layers.9.post_attention_layernorm",
|
597 |
+
"visual.downsample"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
598 |
],
|
599 |
"quant_method": "compressed-tensors",
|
600 |
"quantization_status": "compressed"
|
601 |
}
|
602 |
+
}
|