| 
							 | 
						import os | 
					
					
						
						| 
							 | 
						from typing import Dict, List, Any | 
					
					
						
						| 
							 | 
						from PIL import Image | 
					
					
						
						| 
							 | 
						import jax | 
					
					
						
						| 
							 | 
						from transformers import ViTFeatureExtractor, AutoTokenizer, FlaxVisionEncoderDecoderModel, VisionEncoderDecoderModel | 
					
					
						
						| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						class PreTrainedPipeline(): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __init__(self, path=""): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        model_dir = path | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.model = VisionEncoderDecoderModel.from_pretrained(model_dir) | 
					
					
						
						| 
							 | 
						        self.feature_extractor = ViTFeatureExtractor.from_pretrained(model_dir) | 
					
					
						
						| 
							 | 
						        self.tokenizer = AutoTokenizer.from_pretrained(model_dir) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        max_length = 16 | 
					
					
						
						| 
							 | 
						        num_beams = 4 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        self.gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "return_dict_in_generate": True, "output_scores": True} | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.model.to("cpu") | 
					
					
						
						| 
							 | 
						        self.model.eval() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        def _generate(pixel_values): | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						            with torch.no_grad(): | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						                outputs = self.model.generate(pixel_values, **self.gen_kwargs) | 
					
					
						
						| 
							 | 
						                output_ids = outputs.sequences | 
					
					
						
						| 
							 | 
						                sequences_scores = outputs.sequences_scores | 
					
					
						
						| 
							 | 
						                 | 
					
					
						
						| 
							 | 
						            return output_ids, sequences_scores | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        self.generate = _generate | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        image_path = os.path.join(path, 'val_000000039769.jpg') | 
					
					
						
						| 
							 | 
						        image = Image.open(image_path) | 
					
					
						
						| 
							 | 
						        self(image) | 
					
					
						
						| 
							 | 
						        image.close() | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    def __call__(self, inputs: "Image.Image") -> List[str]: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						        Args: | 
					
					
						
						| 
							 | 
						        Return: | 
					
					
						
						| 
							 | 
						        """ | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        pixel_values = self.feature_extractor(images=inputs, return_tensors="pt").pixel_values | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        output_ids, sequences_scores = self.generate(pixel_values) | 
					
					
						
						| 
							 | 
						        preds = self.tokenizer.batch_decode(output_ids, skip_special_tokens=True) | 
					
					
						
						| 
							 | 
						        preds = [pred.strip() for pred in preds] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        preds = [{"label": preds[0], "score": float(sequences_scores[0])}] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						        return preds | 
					
					
						
						| 
							 | 
						
 |