yarenty commited on
Commit
b36d0ba
·
verified ·
1 Parent(s): 2b8178d

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +232 -0
README.md ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - yarenty/datafusion_QA
5
+ base_model:
6
+ - Qwen/Qwen2.5-3B-Instruct
7
+ tags:
8
+ - rust
9
+ - datafusion
10
+ - arrow
11
+ ---
12
+ # Qwen2.5-3B-DataFusion-Instruct GGUF Model
13
+
14
+ ## Model Overview
15
+
16
+ **Model Name:** Qwen2.5-3B-DataFusion-Instruct
17
+ **Model Type:** Fine-tuned Large Language Model
18
+ **Base Model:** Qwen2.5-3B
19
+ **Specialization:** DataFusion SQL Engine and Rust Programming
20
+ **Format:** GGUF (GGML Universal Format)
21
+ **License:** Apache 2.0
22
+
23
+ ## Model Description
24
+
25
+ This is a specialized fine-tuned version of the Qwen2.5-3B model, specifically trained on comprehensive DataFusion ecosystem data to excel at Rust programming, DataFusion SQL queries, and data processing tasks. The model has been optimized to provide accurate, idiomatic code examples and clear technical explanations.
26
+
27
+ ## Model Files
28
+
29
+ ### Main Model
30
+ - **File:** `model.gguf` (5.8GB)
31
+ - **Type:** Full precision GGUF model
32
+ - **Use Case:** Production environments, highest accuracy requirements
33
+ - **Recommended For:** Development, debugging, complex queries
34
+
35
+ ### Quantized Model
36
+ - **File:** `qwen2.5-3B-datafusion.gguf` (1.8GB)
37
+ - **Type:** Quantized GGUF model (optimized for inference)
38
+ - **Use Case:** Resource-constrained environments, faster inference
39
+ - **Recommended For:** Deployment, testing, resource-limited scenarios
40
+
41
+ ## Training Data
42
+
43
+ ### Dataset Composition
44
+ - **Total QA Pairs:** 265,180
45
+ - **Source Projects:** 36 different repositories
46
+ - **Content Types:** Code implementation, documentation, usage examples
47
+ - **Coverage:** Comprehensive DataFusion ecosystem
48
+
49
+ ### Training Projects
50
+ - **Core DataFusion:** datafusion, datafusion-ballista, datafusion-federation
51
+ - **DataFusion Extensions:** datafusion-functions-json, datafusion-postgres, datafusion-python
52
+ - **Arrow Ecosystem:** arrow-rs, arrow-zarr
53
+ - **Related Tools:** blaze, exon, feldera, greptimedb, horaedb, influxdb
54
+ - **Modern Data Stack:** iceberg-rust, LakeSoul, lance, openobserve, parseable
55
+
56
+ ### Data Quality Features
57
+ - Structured JSONL format with source attribution
58
+ - Code examples with best practices and common pitfalls
59
+ - Error handling guidance and troubleshooting solutions
60
+ - Performance optimization tips and best practices
61
+
62
+ ## Model Capabilities
63
+
64
+ ### Primary Strengths
65
+ 1. **Rust Programming Expertise**
66
+ - Idiomatic Rust code generation
67
+ - DataFusion API usage patterns
68
+ - Error handling and testing best practices
69
+ - Performance optimization techniques
70
+
71
+ 2. **DataFusion SQL Mastery**
72
+ - Complex SQL query construction
73
+ - Table provider implementations
74
+ - UDF (User-Defined Function) development
75
+ - Query optimization and execution planning
76
+
77
+ 3. **Data Processing Knowledge**
78
+ - Arrow format operations
79
+ - Parquet file handling
80
+ - Data transformation pipelines
81
+ - Streaming and batch processing
82
+
83
+ 4. **System Architecture Understanding**
84
+ - Distributed query execution
85
+ - Federation and integration patterns
86
+ - Observability and tracing
87
+ - Performance monitoring
88
+
89
+ ### Technical Domains
90
+ - **SQL Engine Internals:** Query planning, optimization, execution
91
+ - **Data Formats:** Arrow, Parquet, JSON, CSV, Avro
92
+ - **Storage Systems:** Object storage, databases, file systems
93
+ - **Distributed Computing:** Ray, Ballista, cluster management
94
+ - **Streaming:** Real-time data processing, windowing, aggregations
95
+
96
+ ## Usage Instructions
97
+
98
+ ### System Prompt
99
+ The model is configured with a specialized system prompt:
100
+ ```
101
+ You are a helpful, concise, and accurate coding assistant specialized in Rust and the DataFusion SQL engine. Always provide high-level, idiomatic Rust code, DataFusion SQL examples, clear documentation, and robust test cases. Your answers should be precise, actionable, and end with '### End'.
102
+ ```
103
+
104
+ ### Prompt Template
105
+ ```
106
+ ### Instruction:
107
+ {{ .Prompt }}
108
+
109
+ ### Response:
110
+ ```
111
+
112
+ ### Stop Sequences
113
+ - `### Instruction:`
114
+ - `### Response:`
115
+ - `### End`
116
+
117
+ ### Generation Parameters
118
+ - **num_predict:** 1024 (maximum tokens to generate)
119
+ - **repeat_penalty:** 1.2 (prevents repetitive output)
120
+ - **temperature:** 0.7 (balanced creativity vs consistency)
121
+ - **top_p:** 0.9 (nucleus sampling for quality)
122
+
123
+ ## Performance Characteristics
124
+
125
+ ### Accuracy
126
+ - **Code Generation:** High accuracy for Rust and DataFusion patterns
127
+ - **SQL Queries:** Correct syntax and best practices
128
+ - **Documentation:** Clear, actionable explanations
129
+ - **Error Handling:** Comprehensive coverage of common issues
130
+
131
+ ### Efficiency
132
+ - **Main Model:** Highest accuracy, larger memory footprint
133
+ - **Quantized Model:** Optimized inference, reduced memory usage
134
+ - **Response Time:** Fast generation with proper stop sequences
135
+ - **Memory Usage:** Efficient token management
136
+
137
+ ## Use Cases
138
+
139
+ ### Development
140
+ - **Code Generation:** Generate Rust functions and DataFusion queries
141
+ - **Debugging:** Identify and fix common issues
142
+ - **Documentation:** Create clear technical explanations
143
+ - **Testing:** Generate test cases and validation code
144
+
145
+ ### Learning
146
+ - **Tutorial Creation:** Step-by-step learning materials
147
+ - **Best Practices:** Learn recommended approaches
148
+ - **Pattern Recognition:** Understand common design patterns
149
+ - **API Exploration:** Discover available functionality
150
+
151
+ ### Production Support
152
+ - **Query Optimization:** Improve SQL performance
153
+ - **Troubleshooting:** Resolve runtime issues
154
+ - **Integration:** Connect different data sources
155
+ - **Monitoring:** Set up observability and tracing
156
+
157
+ ## Limitations and Considerations
158
+
159
+ ### Technical Limitations
160
+ - **Context Window:** Limited to training data scope
161
+ - **Real-time Updates:** May not reflect latest API changes
162
+ - **Complex Queries:** Very complex scenarios may require human review
163
+ - **Edge Cases:** Unusual configurations may need manual intervention
164
+
165
+ ### Best Practices
166
+ - **Verify Output:** Always review generated code before deployment
167
+ - **Test Thoroughly:** Validate generated queries and functions
168
+ - **Stay Updated:** Check for newer model versions
169
+ - **Human Oversight:** Use as assistant, not replacement for expertise
170
+
171
+ ## Installation and Setup
172
+
173
+ ### Ollama (Recommended)
174
+ ```bash
175
+ # Pull the model
176
+ ollama pull jaro/qwen2.5-3B-datafusion-instruct
177
+
178
+ # Run inference
179
+ ollama run jaro/qwen2.5-3B-datafusion-instruct
180
+ ```
181
+
182
+ ### Direct GGUF Usage
183
+ ```bash
184
+ # Using llama.cpp or compatible tools
185
+ ./llama -m model.gguf -p "How do I create a custom UDF in DataFusion?"
186
+ ```
187
+
188
+ ## Model Comparison
189
+
190
+ | Aspect | Main Model (5.8GB) | Quantized Model (1.8GB) |
191
+ |--------|-------------------|-------------------------|
192
+ | **Accuracy** | Highest | High (slight degradation) |
193
+ | **Memory Usage** | Higher | Lower |
194
+ | **Inference Speed** | Standard | Faster |
195
+ | **Deployment** | Development/Production | Production/Resource-constrained |
196
+ | **Use Case** | Maximum quality | Balanced performance |
197
+
198
+ ## Community and Support
199
+
200
+ ### Contributing
201
+ - Report issues with model behavior
202
+ - Suggest improvements to training data
203
+ - Share use cases and success stories
204
+ - Contribute to the DataFusion ecosystem
205
+
206
+ ### Resources
207
+ - **DataFusion Documentation:** https://docs.datafusion.org/
208
+ - **Apache Arrow:** https://arrow.apache.org/
209
+ - **Rust Programming Language:** https://www.rust-lang.org/
210
+ - **Training Dataset:** Available in https://huggingface.co/datasets/yarenty/datafusion_QA
211
+
212
+ ## Citation
213
+
214
+ When using this model in research or publications, please cite:
215
+
216
+ ```bibtex
217
+ @software{qwen2.5_3b_datafusion_instruct,
218
+ title={Qwen2.5-3B-DataFusion-Instruct: A Specialized Model for DataFusion Ecosystem},
219
+ author={Fine-tuned on DataFusion Ecosystem QA Dataset},
220
+ year={2025},
221
+ url={https://github.com/apache/datafusion},
222
+ license={Apache-2.0}
223
+ }
224
+ ```
225
+
226
+ ## License
227
+
228
+ This model is licensed under the Apache 2.0 License. See the LICENSE file for full details.
229
+
230
+ ---
231
+
232
+ *This model represents a significant advancement in specialized AI assistance for the DataFusion ecosystem, combining the power of large language models with domain-specific expertise in data processing and Rust programming.*