|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig
|
|
from transformers.modeling_rope_utils import rope_config_validation
|
|
|
|
|
|
class Qwen2_5_VLVisionConfig(PretrainedConfig):
|
|
model_type = "qwen2_5_vl"
|
|
base_config_key = "vision_config"
|
|
|
|
def __init__(
|
|
self,
|
|
depth=32,
|
|
hidden_size=3584,
|
|
hidden_act="silu",
|
|
intermediate_size=3420,
|
|
num_heads=16,
|
|
in_channels=3,
|
|
patch_size=14,
|
|
spatial_merge_size=2,
|
|
temporal_patch_size=2,
|
|
tokens_per_second=4,
|
|
window_size=112,
|
|
out_hidden_size=3584,
|
|
fullatt_block_indexes=[7, 15, 23, 31],
|
|
**kwargs,
|
|
):
|
|
super().__init__(**kwargs)
|
|
|
|
self.depth = depth
|
|
self.hidden_size = hidden_size
|
|
self.hidden_act = hidden_act
|
|
self.intermediate_size = intermediate_size
|
|
self.num_heads = num_heads
|
|
self.in_channels = in_channels
|
|
self.patch_size = patch_size
|
|
self.spatial_merge_size = spatial_merge_size
|
|
self.temporal_patch_size = temporal_patch_size
|
|
self.tokens_per_second = tokens_per_second
|
|
self.window_size = window_size
|
|
self.fullatt_block_indexes = fullatt_block_indexes
|
|
self.out_hidden_size = out_hidden_size
|
|
|
|
|
|
class Qwen2_5_VLConfig(PretrainedConfig):
|
|
r"""
|
|
This is the configuration class to store the configuration of a [`Qwen2_5_VLModel`]. It is used to instantiate a
|
|
Qwen2-VL model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
|
with the defaults will yield a similar configuration to that of
|
|
Qwen2-VL-7B-Instruct [Qwen/Qwen2-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2-VL-7B-Instruct).
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
|
documentation from [`PretrainedConfig`] for more information.
|
|
|
|
|
|
Args:
|
|
vocab_size (`int`, *optional*, defaults to 152064):
|
|
Vocabulary size of the Qwen2_5_VL model. Defines the number of different tokens that can be represented by the
|
|
`inputs_ids` passed when calling [`Qwen2_5_VLModel`]
|
|
hidden_size (`int`, *optional*, defaults to 8192):
|
|
Dimension of the hidden representations.
|
|
intermediate_size (`int`, *optional*, defaults to 29568):
|
|
Dimension of the MLP representations.
|
|
num_hidden_layers (`int`, *optional*, defaults to 80):
|
|
Number of hidden layers in the Transformer encoder.
|
|
num_attention_heads (`int`, *optional*, defaults to 64):
|
|
Number of attention heads for each attention layer in the Transformer encoder.
|
|
num_key_value_heads (`int`, *optional*, defaults to 8):
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
|
|
by meanpooling all the original heads within that group. For more details checkout [this
|
|
paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `32`.
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
|
The non-linear activation function (function or string) in the decoder.
|
|
max_position_embeddings (`int`, *optional*, defaults to 32768):
|
|
The maximum sequence length that this model might ever be used with.
|
|
initializer_range (`float`, *optional*, defaults to 0.02):
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05):
|
|
The epsilon used by the rms normalization layers.
|
|
use_cache (`bool`, *optional*, defaults to `True`):
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
|
relevant if `config.is_decoder=True`.
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`):
|
|
Whether the model's input and output word embeddings should be tied.
|
|
rope_theta (`float`, *optional*, defaults to 1000000.0):
|
|
The base period of the RoPE embeddings.
|
|
use_sliding_window (`bool`, *optional*, defaults to `False`):
|
|
Whether to use sliding window attention.
|
|
sliding_window (`int`, *optional*, defaults to 4096):
|
|
Sliding window attention (SWA) window size. If not specified, will default to `4096`.
|
|
max_window_layers (`int`, *optional*, defaults to 80):
|
|
The number of layers that use SWA (Sliding Window Attention). The bottom layers use SWA while the top use full attention.
|
|
attention_dropout (`float`, *optional*, defaults to 0.0):
|
|
The dropout ratio for the attention probabilities.
|
|
vision_config (`Dict`, *optional*):
|
|
The config for the visual encoder initialization.
|
|
rope_scaling (`Dict`, *optional*):
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
|
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
|
|
accordingly.
|
|
Expected contents:
|
|
`rope_type` (`str`):
|
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
|
|
'llama3'], with 'default' being the original RoPE implementation.
|
|
`factor` (`float`, *optional*):
|
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
|
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x *
|
|
original maximum pre-trained length.
|
|
`original_max_position_embeddings` (`int`, *optional*):
|
|
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during
|
|
pretraining.
|
|
`attention_factor` (`float`, *optional*):
|
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
|
|
computation. If unspecified, it defaults to value recommended by the implementation, using the
|
|
`factor` field to infer the suggested value.
|
|
`beta_fast` (`float`, *optional*):
|
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
|
|
ramp function. If unspecified, it defaults to 32.
|
|
`beta_slow` (`float`, *optional*):
|
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
|
|
ramp function. If unspecified, it defaults to 1.
|
|
`short_factor` (`List[float]`, *optional*):
|
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (<
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
|
size divided by the number of attention heads divided by 2
|
|
`long_factor` (`List[float]`, *optional*):
|
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (<
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
|
|
size divided by the number of attention heads divided by 2
|
|
`low_freq_factor` (`float`, *optional*):
|
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE
|
|
`high_freq_factor` (`float`, *optional*):
|
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE
|
|
|
|
```python
|
|
>>> from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2_5_VLConfig
|
|
|
|
>>> # Initializing a Qwen2_5_VL style configuration
|
|
>>> configuration = Qwen2_5_VLConfig()
|
|
|
|
>>> # Initializing a model from the Qwen2-VL-7B style configuration
|
|
>>> model = Qwen2_5_VLForConditionalGeneration(configuration)
|
|
|
|
>>> # Accessing the model configuration
|
|
>>> configuration = model.config
|
|
```"""
|
|
|
|
model_type = "qwen2_5_vl"
|
|
sub_configs = {"vision_config": Qwen2_5_VLVisionConfig}
|
|
keys_to_ignore_at_inference = ["past_key_values"]
|
|
|
|
base_model_tp_plan = {
|
|
"layers.*.self_attn.q_proj": "colwise",
|
|
"layers.*.self_attn.k_proj": "colwise",
|
|
"layers.*.self_attn.v_proj": "colwise",
|
|
"layers.*.self_attn.o_proj": "rowwise",
|
|
"layers.*.mlp.gate_proj": "colwise",
|
|
"layers.*.mlp.up_proj": "colwise",
|
|
"layers.*.mlp.down_proj": "rowwise",
|
|
}
|
|
base_model_pp_plan = {
|
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
|
"norm": (["hidden_states"], ["hidden_states"]),
|
|
}
|
|
|
|
def __init__(
|
|
self,
|
|
vocab_size=152064,
|
|
hidden_size=8192,
|
|
intermediate_size=29568,
|
|
num_hidden_layers=80,
|
|
num_attention_heads=64,
|
|
num_key_value_heads=8,
|
|
hidden_act="silu",
|
|
max_position_embeddings=32768,
|
|
initializer_range=0.02,
|
|
rms_norm_eps=1e-05,
|
|
use_cache=True,
|
|
tie_word_embeddings=False,
|
|
rope_theta=1000000.0,
|
|
use_sliding_window=False,
|
|
sliding_window=4096,
|
|
max_window_layers=80,
|
|
attention_dropout=0.0,
|
|
vision_config=None,
|
|
rope_scaling=None,
|
|
**kwargs,
|
|
):
|
|
if isinstance(vision_config, dict):
|
|
self.vision_config = self.sub_configs["vision_config"](**vision_config)
|
|
elif vision_config is None:
|
|
self.vision_config = self.sub_configs["vision_config"]()
|
|
|
|
self.vocab_size = vocab_size
|
|
self.max_position_embeddings = max_position_embeddings
|
|
self.hidden_size = hidden_size
|
|
self.intermediate_size = intermediate_size
|
|
self.num_hidden_layers = num_hidden_layers
|
|
self.num_attention_heads = num_attention_heads
|
|
self.use_sliding_window = use_sliding_window
|
|
self.sliding_window = sliding_window
|
|
self.max_window_layers = max_window_layers
|
|
|
|
|
|
if num_key_value_heads is None:
|
|
num_key_value_heads = num_attention_heads
|
|
|
|
self.num_key_value_heads = num_key_value_heads
|
|
self.hidden_act = hidden_act
|
|
self.initializer_range = initializer_range
|
|
self.rms_norm_eps = rms_norm_eps
|
|
self.use_cache = use_cache
|
|
self.rope_theta = rope_theta
|
|
self.attention_dropout = attention_dropout
|
|
self.rope_scaling = rope_scaling
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
|
if self.rope_scaling["type"] == "mrope":
|
|
self.rope_scaling["type"] = "default"
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
|
rope_config_validation(self, ignore_keys={"mrope_section"})
|
|
|
|
super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
|
|
|
|
|
|
__all__ = ["Qwen2_5_VLConfig"]
|
|
|