|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
import json |
|
import os |
|
|
|
|
|
|
|
batch_size = 32 |
|
block_size = 8 |
|
max_iters = 3000 |
|
eval_interval = 300 |
|
learning_rate = 1e-2 |
|
device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
eval_iters = 200 |
|
n_embd = 32 |
|
n_head = 4 |
|
n_layer = 4 |
|
dropout = 0.0 |
|
|
|
|
|
|
|
|
|
|
|
file_path = 'dataset.jsonl' |
|
|
|
|
|
corpus = "" |
|
try: |
|
with open(file_path, 'r') as f: |
|
for line in f: |
|
data_point = json.loads(line) |
|
|
|
|
|
corpus += data_point['header'] + '\n' + data_point['formal_statement'] + '\n' |
|
except FileNotFoundError: |
|
print(f"Error: The file '{file_path}' was not found. Please create it and add your data.") |
|
exit() |
|
except json.JSONDecodeError: |
|
print(f"Error: There was a problem parsing a line in '{file_path}'. Make sure each line is a valid JSON object.") |
|
exit() |
|
except KeyError: |
|
print(f"Error: A line in '{file_path}' does not have the 'header' or 'formal_statement' keys. Please check your JSONL file format.") |
|
exit() |
|
|
|
|
|
if not corpus: |
|
print(f"Error: The corpus is empty. This could be because '{file_path}' is empty or contains no valid text.") |
|
exit() |
|
|
|
|
|
|
|
chars = sorted(list(set(corpus))) |
|
vocab_size = len(chars) |
|
stoi = {ch: i for i, ch in enumerate(chars)} |
|
itos = {i: ch for i, ch in enumerate(chars)} |
|
|
|
encode = lambda s: [stoi[c] for c in s] |
|
decode = lambda l: ''.join([itos[i] for i in l]) |
|
|
|
|
|
data = torch.tensor(encode(corpus), dtype=torch.long) |
|
|
|
|
|
n = int(0.9 * len(data)) |
|
train_data = data[:n] |
|
val_data = data[n:] |
|
|
|
|
|
|
|
def get_batch(split): |
|
data = train_data if split == 'train' else val_data |
|
|
|
ix = torch.randint(len(data) - block_size, (batch_size,)) |
|
|
|
x = torch.stack([data[i:i + block_size] for i in ix]) |
|
y = torch.stack([data[i + 1:i + block_size + 1] for i in ix]) |
|
x, y = x.to(device), y.to(device) |
|
return x, y |
|
|
|
|
|
|
|
@torch.no_grad() |
|
def estimate_loss(): |
|
out = {} |
|
model.eval() |
|
for split in ['train', 'val']: |
|
losses = torch.zeros(eval_iters) |
|
for k in range(eval_iters): |
|
X, Y = get_batch(split) |
|
logits, loss = model(X, Y) |
|
losses[k] = loss.item() |
|
out[split] = losses.mean() |
|
model.train() |
|
return out |
|
|
|
|
|
|
|
class Head(nn.Module): |
|
def __init__(self, head_size): |
|
super().__init__() |
|
|
|
self.key = nn.Linear(n_embd, head_size, bias=False) |
|
self.query = nn.Linear(n_embd, head_size, bias=False) |
|
self.value = nn.Linear(n_embd, head_size, bias=False) |
|
|
|
|
|
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
B, T, C = x.shape |
|
k = self.key(x) |
|
q = self.query(x) |
|
|
|
|
|
|
|
wei = q @ k.transpose(-2, -1) * C**-0.5 |
|
|
|
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) |
|
|
|
wei = F.softmax(wei, dim=-1) |
|
self.dropout(wei) |
|
|
|
v = self.value(x) |
|
out = wei @ v |
|
return out |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, num_heads, head_size): |
|
super().__init__() |
|
|
|
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) |
|
|
|
self.proj = nn.Linear(num_heads * head_size, n_embd) |
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def forward(self, x): |
|
|
|
out = torch.cat([h(x) for h in self.heads], dim=-1) |
|
out = self.dropout(self.proj(out)) |
|
return out |
|
|
|
|
|
class FeedFoward(nn.Module): |
|
def __init__(self, n_embd): |
|
super().__init__() |
|
|
|
self.net = nn.Sequential( |
|
nn.Linear(n_embd, 4 * n_embd), |
|
nn.ReLU(), |
|
nn.Linear(4 * n_embd, n_embd), |
|
nn.Dropout(dropout), |
|
) |
|
|
|
def forward(self, x): |
|
return self.net(x) |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, n_embd, n_head): |
|
super().__init__() |
|
head_size = n_embd // n_head |
|
|
|
self.sa = MultiHeadAttention(n_head, head_size) |
|
|
|
self.ffwd = FeedFoward(n_embd) |
|
|
|
self.ln1 = nn.LayerNorm(n_embd) |
|
self.ln2 = nn.LayerNorm(n_embd) |
|
|
|
def forward(self, x): |
|
|
|
x = x + self.sa(self.ln1(x)) |
|
|
|
x = x + self.ffwd(self.ln2(x)) |
|
return x |
|
|
|
|
|
class LanguageModel(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) |
|
|
|
self.position_embedding_table = nn.Embedding(block_size, n_embd) |
|
|
|
self.blocks = nn.Sequential(*[TransformerBlock(n_embd, n_head) for _ in range(n_layer)]) |
|
|
|
self.ln_f = nn.LayerNorm(n_embd) |
|
|
|
self.lm_head = nn.Linear(n_embd, vocab_size) |
|
|
|
def forward(self, idx, targets=None): |
|
B, T = idx.shape |
|
|
|
|
|
tok_emb = self.token_embedding_table(idx) |
|
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) |
|
|
|
x = tok_emb + pos_emb |
|
|
|
x = self.blocks(x) |
|
x = self.ln_f(x) |
|
|
|
logits = self.lm_head(x) |
|
|
|
loss = None |
|
if targets is not None: |
|
|
|
B, T, C = logits.shape |
|
logits = logits.view(B * T, C) |
|
targets = targets.view(B * T) |
|
loss = F.cross_entropy(logits, targets) |
|
|
|
return logits, loss |
|
|
|
|
|
def generate(self, idx, max_new_tokens): |
|
|
|
for _ in range(max_new_tokens): |
|
|
|
idx_cond = idx[:, -block_size:] |
|
|
|
logits, loss = self(idx_cond) |
|
|
|
logits = logits[:, -1, :] |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
return idx |
|
|
|
|
|
model = LanguageModel() |
|
m = model.to(device) |
|
|
|
|
|
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate) |
|
|
|
|
|
for iter in range(max_iters): |
|
|
|
if iter % eval_interval == 0: |
|
losses = estimate_loss() |
|
print(f"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}") |
|
|
|
|
|
xb, yb = get_batch('train') |
|
|
|
|
|
logits, loss = model(xb, yb) |
|
|
|
optimizer.zero_grad(set_to_none=True) |
|
loss.backward() |
|
|
|
optimizer.step() |
|
|
|
|
|
context = torch.zeros((1, 1), dtype=torch.long, device=device) |
|
generated_text_indices = m.generate(context, max_new_tokens=20) |
|
print("\nGenerated text:") |
|
print(decode(generated_text_indices[0].tolist())) |