File size: 1,918 Bytes
63cf3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa5feb
 
 
 
 
63cf3f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfa5feb
 
63cf3f4
 
 
 
 
 
 
 
 
 
dfa5feb
 
 
63cf3f4
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
base_model: huggingface/CodeBERTa-small-v1
tags:
- generated_from_trainer
metrics:
- f1
- accuracy
- precision
- recall
model-index:
- name: CodeBERTa-small-v1-sourcecode-detection-clf
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# CodeBERTa-small-v1-sourcecode-detection-clf

This model is a fine-tuned version of [huggingface/CodeBERTa-small-v1](https://huggingface.co/huggingface/CodeBERTa-small-v1) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0719
- F1: 0.9900
- Accuracy: 0.99
- Precision: 0.9902
- Recall: 0.99

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 256
- eval_batch_size: 256
- seed: 2024
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 100

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Accuracy | Precision | Recall |
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|
| No log        | 0     | 0    | 0.6985          | 0.3223 | 0.49     | 0.2401    | 0.49   |
| 0.0           | 12.5  | 50   | 0.0716          | 0.9900 | 0.99     | 0.9902    | 0.99   |
| 0.0           | 25.0  | 100  | 0.0719          | 0.9900 | 0.99     | 0.9902    | 0.99   |


### Framework versions

- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3