vigneshR commited on
Commit
90b247c
·
verified ·
1 Parent(s): b40b330

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
chat_template.jinja ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if custom_tools is defined %}
3
+ {%- set tools = custom_tools %}
4
+ {%- endif %}
5
+ {%- if not tools_in_user_message is defined %}
6
+ {%- set tools_in_user_message = true %}
7
+ {%- endif %}
8
+ {%- if not date_string is defined %}
9
+ {%- set date_string = "26 Jul 2024" %}
10
+ {%- endif %}
11
+ {%- if not tools is defined %}
12
+ {%- set tools = none %}
13
+ {%- endif %}
14
+
15
+ {#- This block extracts the system message, so we can slot it into the right place. #}
16
+ {%- if messages[0]['role'] == 'system' %}
17
+ {%- set system_message = messages[0]['content']|trim %}
18
+ {%- set messages = messages[1:] %}
19
+ {%- else %}
20
+ {%- set system_message = "" %}
21
+ {%- endif %}
22
+
23
+ {#- System message + builtin tools #}
24
+ {{- "<|start_header_id|>system<|end_header_id|>\n\n" }}
25
+ {%- if builtin_tools is defined or tools is not none %}
26
+ {{- "Environment: ipython\n" }}
27
+ {%- endif %}
28
+ {%- if builtin_tools is defined %}
29
+ {{- "Tools: " + builtin_tools | reject('equalto', 'code_interpreter') | join(", ") + "\n\n"}}
30
+ {%- endif %}
31
+ {{- "Cutting Knowledge Date: December 2023\n" }}
32
+ {{- "Today Date: " + date_string + "\n\n" }}
33
+ {%- if tools is not none and not tools_in_user_message %}
34
+ {{- "You have access to the following functions. To call a function, please respond with JSON for a function call." }}
35
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
36
+ {{- "Do not use variables.\n\n" }}
37
+ {%- for t in tools %}
38
+ {{- t | tojson(indent=4) }}
39
+ {{- "\n\n" }}
40
+ {%- endfor %}
41
+ {%- endif %}
42
+ {{- system_message }}
43
+ {{- "<|eot_id|>" }}
44
+
45
+ {#- Custom tools are passed in a user message with some extra guidance #}
46
+ {%- if tools_in_user_message and not tools is none %}
47
+ {#- Extract the first user message so we can plug it in here #}
48
+ {%- if messages | length != 0 %}
49
+ {%- set first_user_message = messages[0]['content']|trim %}
50
+ {%- set messages = messages[1:] %}
51
+ {%- else %}
52
+ {{- raise_exception("Cannot put tools in the first user message when there's no first user message!") }}
53
+ {%- endif %}
54
+ {{- '<|start_header_id|>user<|end_header_id|>\n\n' -}}
55
+ {{- "Given the following functions, please respond with a JSON for a function call " }}
56
+ {{- "with its proper arguments that best answers the given prompt.\n\n" }}
57
+ {{- 'Respond in the format {"name": function name, "parameters": dictionary of argument name and its value}.' }}
58
+ {{- "Do not use variables.\n\n" }}
59
+ {%- for t in tools %}
60
+ {{- t | tojson(indent=4) }}
61
+ {{- "\n\n" }}
62
+ {%- endfor %}
63
+ {{- first_user_message + "<|eot_id|>"}}
64
+ {%- endif %}
65
+
66
+ {%- for message in messages %}
67
+ {%- if not (message.role == 'ipython' or message.role == 'tool' or 'tool_calls' in message) %}
68
+ {{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' }}
69
+ {%- elif 'tool_calls' in message %}
70
+ {%- if not message.tool_calls|length == 1 %}
71
+ {{- raise_exception("This model only supports single tool-calls at once!") }}
72
+ {%- endif %}
73
+ {%- set tool_call = message.tool_calls[0].function %}
74
+ {%- if builtin_tools is defined and tool_call.name in builtin_tools %}
75
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
76
+ {{- "<|python_tag|>" + tool_call.name + ".call(" }}
77
+ {%- for arg_name, arg_val in tool_call.arguments | items %}
78
+ {{- arg_name + '="' + arg_val + '"' }}
79
+ {%- if not loop.last %}
80
+ {{- ", " }}
81
+ {%- endif %}
82
+ {%- endfor %}
83
+ {{- ")" }}
84
+ {%- else %}
85
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' -}}
86
+ {{- '{"name": "' + tool_call.name + '", ' }}
87
+ {{- '"parameters": ' }}
88
+ {{- tool_call.arguments | tojson }}
89
+ {{- "}" }}
90
+ {%- endif %}
91
+ {%- if builtin_tools is defined %}
92
+ {#- This means we're in ipython mode #}
93
+ {{- "<|eom_id|>" }}
94
+ {%- else %}
95
+ {{- "<|eot_id|>" }}
96
+ {%- endif %}
97
+ {%- elif message.role == "tool" or message.role == "ipython" %}
98
+ {{- "<|start_header_id|>ipython<|end_header_id|>\n\n" }}
99
+ {%- if message.content is mapping or message.content is iterable %}
100
+ {{- message.content | tojson }}
101
+ {%- else %}
102
+ {{- message.content }}
103
+ {%- endif %}
104
+ {{- "<|eot_id|>" }}
105
+ {%- endif %}
106
+ {%- endfor %}
107
+ {%- if add_generation_prompt %}
108
+ {{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}
109
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "LlamaForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 128000,
8
+ "eos_token_id": 128009,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 14336,
14
+ "max_position_embeddings": 131072,
15
+ "mlp_bias": false,
16
+ "model_type": "llama",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 32,
19
+ "num_key_value_heads": 8,
20
+ "pad_token_id": 128004,
21
+ "pretraining_tp": 1,
22
+ "rms_norm_eps": 1e-05,
23
+ "rope_scaling": {
24
+ "factor": 8.0,
25
+ "high_freq_factor": 4.0,
26
+ "low_freq_factor": 1.0,
27
+ "original_max_position_embeddings": 8192,
28
+ "rope_type": "llama3"
29
+ },
30
+ "rope_theta": 500000.0,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.52.2",
34
+ "unsloth_fixed": true,
35
+ "unsloth_version": "2025.3.19",
36
+ "use_cache": false,
37
+ "vocab_size": 128256
38
+ }
generation_config.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 128000,
4
+ "eos_token_id": 128009,
5
+ "pad_token_id": 128004,
6
+ "transformers_version": "4.52.2",
7
+ "use_cache": false
8
+ }
global_step105/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f8d69210d6f4ab71976932ddb337bbd9691ef03115fd9a5ca4c2cb9265a43e8a
3
+ size 32121053258
global_step105/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64f75ccebffa8a29d748a9db46c30d6c8669244e8da037723408b1d4c20ebfbd
3
+ size 32121053258
global_step105/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:556addd31067581684e513025a6ab887241798a33747d6f0ca53ea741fe55260
3
+ size 32121053258
global_step105/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e42ddce0bafa86bc697581b6d78f090858947b3732b2c05f24917714a13fca1b
3
+ size 147237
global_step105/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c91ef83fd5a907a84966be9ccf7073ff98afc5eb3053ed40d5dcb2808a625cf
3
+ size 147237
global_step105/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4b47f19b774d1628ce2dc89fc5e1d613a9b0a9f99242c0d4e155c70e035922d
3
+ size 147237
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step105
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1d6841c744ba17b3500cd73ba2f33ac5c202a7d57d7137c517775e685ab309c
3
+ size 4976698672
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed75cb193c10a3bafe44e9b3129217ef3ac30fdd291eb605dffe53a8776c8bd6
3
+ size 4999802720
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdc450529e1b5731d97aecf989074a679fc729e35649e7a0b2c5f4fa2ce23d07
3
+ size 4915916176
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58d6bedb2f944fc599af141ca624a4cf5e1e4e2aba595f53656132d452718480
3
+ size 1168138808
model.safetensors.index.json ADDED
@@ -0,0 +1,298 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16060522496
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
27
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
28
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
29
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
30
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
62
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
91
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.17.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.17.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.18.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
106
+ "model.layers.18.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.19.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
113
+ "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.19.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.19.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
117
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
118
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
119
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
120
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
121
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
122
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
123
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
124
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
125
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
127
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
128
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
131
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
132
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
133
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
134
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
139
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
146
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
149
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
151
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
157
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
161
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.27.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
194
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.27.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.28.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.28.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.28.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.29.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.29.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.29.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
216
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
217
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
218
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
219
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
220
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
221
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
222
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
224
+ "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.30.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.30.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.30.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
234
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
235
+ "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.31.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.31.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
241
+ "model.layers.31.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
242
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
245
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
249
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
256
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
260
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
271
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
278
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
290
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
291
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
292
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
293
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
294
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.norm.weight": "model-00004-of-00004.safetensors"
297
+ }
298
+ }
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65d701d97a5c34ac763d3fc30134b192556235d4dda0e7c18884522e97a65de9
3
+ size 15024
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3f5a47b9c2b510c4f3d9643a4288a90ef1061f18c150b864436a68f3972a73cf
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac77f356bc1dcf08116044cec78bc0e7d8ef7a7e1f84049735b65918be37e830
3
+ size 14960
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7b13c9cab4d6d47492f390a1a4c760fb9d79c0b6a8b48019ed2338865b96133d
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot_id|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad_id|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6b9e4e7fb171f92fd137b777cc2714bf87d11576700a1dcd7a399e7bbe39537b
3
+ size 17209920
tokenizer_config.json ADDED
@@ -0,0 +1,2066 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "added_tokens_decoder": {
4
+ "128000": {
5
+ "content": "<|begin_of_text|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "128001": {
13
+ "content": "<|end_of_text|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "128002": {
21
+ "content": "<|reserved_special_token_0|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "128003": {
29
+ "content": "<|reserved_special_token_1|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "128004": {
37
+ "content": "<|finetune_right_pad_id|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "128005": {
45
+ "content": "<|reserved_special_token_2|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "128006": {
53
+ "content": "<|start_header_id|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "128007": {
61
+ "content": "<|end_header_id|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "128008": {
69
+ "content": "<|eom_id|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "128009": {
77
+ "content": "<|eot_id|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "128010": {
85
+ "content": "<|python_tag|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "128011": {
93
+ "content": "<|reserved_special_token_3|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "128012": {
101
+ "content": "<|reserved_special_token_4|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "128013": {
109
+ "content": "<|reserved_special_token_5|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "128014": {
117
+ "content": "<|reserved_special_token_6|>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": true
123
+ },
124
+ "128015": {
125
+ "content": "<|reserved_special_token_7|>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": true
131
+ },
132
+ "128016": {
133
+ "content": "<|reserved_special_token_8|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": true
139
+ },
140
+ "128017": {
141
+ "content": "<|reserved_special_token_9|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": true
147
+ },
148
+ "128018": {
149
+ "content": "<|reserved_special_token_10|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": true
155
+ },
156
+ "128019": {
157
+ "content": "<|reserved_special_token_11|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": true
163
+ },
164
+ "128020": {
165
+ "content": "<|reserved_special_token_12|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": true
171
+ },
172
+ "128021": {
173
+ "content": "<|reserved_special_token_13|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": true
179
+ },
180
+ "128022": {
181
+ "content": "<|reserved_special_token_14|>",
182
+ "lstrip": false,
183
+ "normalized": false,
184
+ "rstrip": false,
185
+ "single_word": false,
186
+ "special": true
187
+ },
188
+ "128023": {
189
+ "content": "<|reserved_special_token_15|>",
190
+ "lstrip": false,
191
+ "normalized": false,
192
+ "rstrip": false,
193
+ "single_word": false,
194
+ "special": true
195
+ },
196
+ "128024": {
197
+ "content": "<|reserved_special_token_16|>",
198
+ "lstrip": false,
199
+ "normalized": false,
200
+ "rstrip": false,
201
+ "single_word": false,
202
+ "special": true
203
+ },
204
+ "128025": {
205
+ "content": "<|reserved_special_token_17|>",
206
+ "lstrip": false,
207
+ "normalized": false,
208
+ "rstrip": false,
209
+ "single_word": false,
210
+ "special": true
211
+ },
212
+ "128026": {
213
+ "content": "<|reserved_special_token_18|>",
214
+ "lstrip": false,
215
+ "normalized": false,
216
+ "rstrip": false,
217
+ "single_word": false,
218
+ "special": true
219
+ },
220
+ "128027": {
221
+ "content": "<|reserved_special_token_19|>",
222
+ "lstrip": false,
223
+ "normalized": false,
224
+ "rstrip": false,
225
+ "single_word": false,
226
+ "special": true
227
+ },
228
+ "128028": {
229
+ "content": "<|reserved_special_token_20|>",
230
+ "lstrip": false,
231
+ "normalized": false,
232
+ "rstrip": false,
233
+ "single_word": false,
234
+ "special": true
235
+ },
236
+ "128029": {
237
+ "content": "<|reserved_special_token_21|>",
238
+ "lstrip": false,
239
+ "normalized": false,
240
+ "rstrip": false,
241
+ "single_word": false,
242
+ "special": true
243
+ },
244
+ "128030": {
245
+ "content": "<|reserved_special_token_22|>",
246
+ "lstrip": false,
247
+ "normalized": false,
248
+ "rstrip": false,
249
+ "single_word": false,
250
+ "special": true
251
+ },
252
+ "128031": {
253
+ "content": "<|reserved_special_token_23|>",
254
+ "lstrip": false,
255
+ "normalized": false,
256
+ "rstrip": false,
257
+ "single_word": false,
258
+ "special": true
259
+ },
260
+ "128032": {
261
+ "content": "<|reserved_special_token_24|>",
262
+ "lstrip": false,
263
+ "normalized": false,
264
+ "rstrip": false,
265
+ "single_word": false,
266
+ "special": true
267
+ },
268
+ "128033": {
269
+ "content": "<|reserved_special_token_25|>",
270
+ "lstrip": false,
271
+ "normalized": false,
272
+ "rstrip": false,
273
+ "single_word": false,
274
+ "special": true
275
+ },
276
+ "128034": {
277
+ "content": "<|reserved_special_token_26|>",
278
+ "lstrip": false,
279
+ "normalized": false,
280
+ "rstrip": false,
281
+ "single_word": false,
282
+ "special": true
283
+ },
284
+ "128035": {
285
+ "content": "<|reserved_special_token_27|>",
286
+ "lstrip": false,
287
+ "normalized": false,
288
+ "rstrip": false,
289
+ "single_word": false,
290
+ "special": true
291
+ },
292
+ "128036": {
293
+ "content": "<|reserved_special_token_28|>",
294
+ "lstrip": false,
295
+ "normalized": false,
296
+ "rstrip": false,
297
+ "single_word": false,
298
+ "special": true
299
+ },
300
+ "128037": {
301
+ "content": "<|reserved_special_token_29|>",
302
+ "lstrip": false,
303
+ "normalized": false,
304
+ "rstrip": false,
305
+ "single_word": false,
306
+ "special": true
307
+ },
308
+ "128038": {
309
+ "content": "<|reserved_special_token_30|>",
310
+ "lstrip": false,
311
+ "normalized": false,
312
+ "rstrip": false,
313
+ "single_word": false,
314
+ "special": true
315
+ },
316
+ "128039": {
317
+ "content": "<|reserved_special_token_31|>",
318
+ "lstrip": false,
319
+ "normalized": false,
320
+ "rstrip": false,
321
+ "single_word": false,
322
+ "special": true
323
+ },
324
+ "128040": {
325
+ "content": "<|reserved_special_token_32|>",
326
+ "lstrip": false,
327
+ "normalized": false,
328
+ "rstrip": false,
329
+ "single_word": false,
330
+ "special": true
331
+ },
332
+ "128041": {
333
+ "content": "<|reserved_special_token_33|>",
334
+ "lstrip": false,
335
+ "normalized": false,
336
+ "rstrip": false,
337
+ "single_word": false,
338
+ "special": true
339
+ },
340
+ "128042": {
341
+ "content": "<|reserved_special_token_34|>",
342
+ "lstrip": false,
343
+ "normalized": false,
344
+ "rstrip": false,
345
+ "single_word": false,
346
+ "special": true
347
+ },
348
+ "128043": {
349
+ "content": "<|reserved_special_token_35|>",
350
+ "lstrip": false,
351
+ "normalized": false,
352
+ "rstrip": false,
353
+ "single_word": false,
354
+ "special": true
355
+ },
356
+ "128044": {
357
+ "content": "<|reserved_special_token_36|>",
358
+ "lstrip": false,
359
+ "normalized": false,
360
+ "rstrip": false,
361
+ "single_word": false,
362
+ "special": true
363
+ },
364
+ "128045": {
365
+ "content": "<|reserved_special_token_37|>",
366
+ "lstrip": false,
367
+ "normalized": false,
368
+ "rstrip": false,
369
+ "single_word": false,
370
+ "special": true
371
+ },
372
+ "128046": {
373
+ "content": "<|reserved_special_token_38|>",
374
+ "lstrip": false,
375
+ "normalized": false,
376
+ "rstrip": false,
377
+ "single_word": false,
378
+ "special": true
379
+ },
380
+ "128047": {
381
+ "content": "<|reserved_special_token_39|>",
382
+ "lstrip": false,
383
+ "normalized": false,
384
+ "rstrip": false,
385
+ "single_word": false,
386
+ "special": true
387
+ },
388
+ "128048": {
389
+ "content": "<|reserved_special_token_40|>",
390
+ "lstrip": false,
391
+ "normalized": false,
392
+ "rstrip": false,
393
+ "single_word": false,
394
+ "special": true
395
+ },
396
+ "128049": {
397
+ "content": "<|reserved_special_token_41|>",
398
+ "lstrip": false,
399
+ "normalized": false,
400
+ "rstrip": false,
401
+ "single_word": false,
402
+ "special": true
403
+ },
404
+ "128050": {
405
+ "content": "<|reserved_special_token_42|>",
406
+ "lstrip": false,
407
+ "normalized": false,
408
+ "rstrip": false,
409
+ "single_word": false,
410
+ "special": true
411
+ },
412
+ "128051": {
413
+ "content": "<|reserved_special_token_43|>",
414
+ "lstrip": false,
415
+ "normalized": false,
416
+ "rstrip": false,
417
+ "single_word": false,
418
+ "special": true
419
+ },
420
+ "128052": {
421
+ "content": "<|reserved_special_token_44|>",
422
+ "lstrip": false,
423
+ "normalized": false,
424
+ "rstrip": false,
425
+ "single_word": false,
426
+ "special": true
427
+ },
428
+ "128053": {
429
+ "content": "<|reserved_special_token_45|>",
430
+ "lstrip": false,
431
+ "normalized": false,
432
+ "rstrip": false,
433
+ "single_word": false,
434
+ "special": true
435
+ },
436
+ "128054": {
437
+ "content": "<|reserved_special_token_46|>",
438
+ "lstrip": false,
439
+ "normalized": false,
440
+ "rstrip": false,
441
+ "single_word": false,
442
+ "special": true
443
+ },
444
+ "128055": {
445
+ "content": "<|reserved_special_token_47|>",
446
+ "lstrip": false,
447
+ "normalized": false,
448
+ "rstrip": false,
449
+ "single_word": false,
450
+ "special": true
451
+ },
452
+ "128056": {
453
+ "content": "<|reserved_special_token_48|>",
454
+ "lstrip": false,
455
+ "normalized": false,
456
+ "rstrip": false,
457
+ "single_word": false,
458
+ "special": true
459
+ },
460
+ "128057": {
461
+ "content": "<|reserved_special_token_49|>",
462
+ "lstrip": false,
463
+ "normalized": false,
464
+ "rstrip": false,
465
+ "single_word": false,
466
+ "special": true
467
+ },
468
+ "128058": {
469
+ "content": "<|reserved_special_token_50|>",
470
+ "lstrip": false,
471
+ "normalized": false,
472
+ "rstrip": false,
473
+ "single_word": false,
474
+ "special": true
475
+ },
476
+ "128059": {
477
+ "content": "<|reserved_special_token_51|>",
478
+ "lstrip": false,
479
+ "normalized": false,
480
+ "rstrip": false,
481
+ "single_word": false,
482
+ "special": true
483
+ },
484
+ "128060": {
485
+ "content": "<|reserved_special_token_52|>",
486
+ "lstrip": false,
487
+ "normalized": false,
488
+ "rstrip": false,
489
+ "single_word": false,
490
+ "special": true
491
+ },
492
+ "128061": {
493
+ "content": "<|reserved_special_token_53|>",
494
+ "lstrip": false,
495
+ "normalized": false,
496
+ "rstrip": false,
497
+ "single_word": false,
498
+ "special": true
499
+ },
500
+ "128062": {
501
+ "content": "<|reserved_special_token_54|>",
502
+ "lstrip": false,
503
+ "normalized": false,
504
+ "rstrip": false,
505
+ "single_word": false,
506
+ "special": true
507
+ },
508
+ "128063": {
509
+ "content": "<|reserved_special_token_55|>",
510
+ "lstrip": false,
511
+ "normalized": false,
512
+ "rstrip": false,
513
+ "single_word": false,
514
+ "special": true
515
+ },
516
+ "128064": {
517
+ "content": "<|reserved_special_token_56|>",
518
+ "lstrip": false,
519
+ "normalized": false,
520
+ "rstrip": false,
521
+ "single_word": false,
522
+ "special": true
523
+ },
524
+ "128065": {
525
+ "content": "<|reserved_special_token_57|>",
526
+ "lstrip": false,
527
+ "normalized": false,
528
+ "rstrip": false,
529
+ "single_word": false,
530
+ "special": true
531
+ },
532
+ "128066": {
533
+ "content": "<|reserved_special_token_58|>",
534
+ "lstrip": false,
535
+ "normalized": false,
536
+ "rstrip": false,
537
+ "single_word": false,
538
+ "special": true
539
+ },
540
+ "128067": {
541
+ "content": "<|reserved_special_token_59|>",
542
+ "lstrip": false,
543
+ "normalized": false,
544
+ "rstrip": false,
545
+ "single_word": false,
546
+ "special": true
547
+ },
548
+ "128068": {
549
+ "content": "<|reserved_special_token_60|>",
550
+ "lstrip": false,
551
+ "normalized": false,
552
+ "rstrip": false,
553
+ "single_word": false,
554
+ "special": true
555
+ },
556
+ "128069": {
557
+ "content": "<|reserved_special_token_61|>",
558
+ "lstrip": false,
559
+ "normalized": false,
560
+ "rstrip": false,
561
+ "single_word": false,
562
+ "special": true
563
+ },
564
+ "128070": {
565
+ "content": "<|reserved_special_token_62|>",
566
+ "lstrip": false,
567
+ "normalized": false,
568
+ "rstrip": false,
569
+ "single_word": false,
570
+ "special": true
571
+ },
572
+ "128071": {
573
+ "content": "<|reserved_special_token_63|>",
574
+ "lstrip": false,
575
+ "normalized": false,
576
+ "rstrip": false,
577
+ "single_word": false,
578
+ "special": true
579
+ },
580
+ "128072": {
581
+ "content": "<|reserved_special_token_64|>",
582
+ "lstrip": false,
583
+ "normalized": false,
584
+ "rstrip": false,
585
+ "single_word": false,
586
+ "special": true
587
+ },
588
+ "128073": {
589
+ "content": "<|reserved_special_token_65|>",
590
+ "lstrip": false,
591
+ "normalized": false,
592
+ "rstrip": false,
593
+ "single_word": false,
594
+ "special": true
595
+ },
596
+ "128074": {
597
+ "content": "<|reserved_special_token_66|>",
598
+ "lstrip": false,
599
+ "normalized": false,
600
+ "rstrip": false,
601
+ "single_word": false,
602
+ "special": true
603
+ },
604
+ "128075": {
605
+ "content": "<|reserved_special_token_67|>",
606
+ "lstrip": false,
607
+ "normalized": false,
608
+ "rstrip": false,
609
+ "single_word": false,
610
+ "special": true
611
+ },
612
+ "128076": {
613
+ "content": "<|reserved_special_token_68|>",
614
+ "lstrip": false,
615
+ "normalized": false,
616
+ "rstrip": false,
617
+ "single_word": false,
618
+ "special": true
619
+ },
620
+ "128077": {
621
+ "content": "<|reserved_special_token_69|>",
622
+ "lstrip": false,
623
+ "normalized": false,
624
+ "rstrip": false,
625
+ "single_word": false,
626
+ "special": true
627
+ },
628
+ "128078": {
629
+ "content": "<|reserved_special_token_70|>",
630
+ "lstrip": false,
631
+ "normalized": false,
632
+ "rstrip": false,
633
+ "single_word": false,
634
+ "special": true
635
+ },
636
+ "128079": {
637
+ "content": "<|reserved_special_token_71|>",
638
+ "lstrip": false,
639
+ "normalized": false,
640
+ "rstrip": false,
641
+ "single_word": false,
642
+ "special": true
643
+ },
644
+ "128080": {
645
+ "content": "<|reserved_special_token_72|>",
646
+ "lstrip": false,
647
+ "normalized": false,
648
+ "rstrip": false,
649
+ "single_word": false,
650
+ "special": true
651
+ },
652
+ "128081": {
653
+ "content": "<|reserved_special_token_73|>",
654
+ "lstrip": false,
655
+ "normalized": false,
656
+ "rstrip": false,
657
+ "single_word": false,
658
+ "special": true
659
+ },
660
+ "128082": {
661
+ "content": "<|reserved_special_token_74|>",
662
+ "lstrip": false,
663
+ "normalized": false,
664
+ "rstrip": false,
665
+ "single_word": false,
666
+ "special": true
667
+ },
668
+ "128083": {
669
+ "content": "<|reserved_special_token_75|>",
670
+ "lstrip": false,
671
+ "normalized": false,
672
+ "rstrip": false,
673
+ "single_word": false,
674
+ "special": true
675
+ },
676
+ "128084": {
677
+ "content": "<|reserved_special_token_76|>",
678
+ "lstrip": false,
679
+ "normalized": false,
680
+ "rstrip": false,
681
+ "single_word": false,
682
+ "special": true
683
+ },
684
+ "128085": {
685
+ "content": "<|reserved_special_token_77|>",
686
+ "lstrip": false,
687
+ "normalized": false,
688
+ "rstrip": false,
689
+ "single_word": false,
690
+ "special": true
691
+ },
692
+ "128086": {
693
+ "content": "<|reserved_special_token_78|>",
694
+ "lstrip": false,
695
+ "normalized": false,
696
+ "rstrip": false,
697
+ "single_word": false,
698
+ "special": true
699
+ },
700
+ "128087": {
701
+ "content": "<|reserved_special_token_79|>",
702
+ "lstrip": false,
703
+ "normalized": false,
704
+ "rstrip": false,
705
+ "single_word": false,
706
+ "special": true
707
+ },
708
+ "128088": {
709
+ "content": "<|reserved_special_token_80|>",
710
+ "lstrip": false,
711
+ "normalized": false,
712
+ "rstrip": false,
713
+ "single_word": false,
714
+ "special": true
715
+ },
716
+ "128089": {
717
+ "content": "<|reserved_special_token_81|>",
718
+ "lstrip": false,
719
+ "normalized": false,
720
+ "rstrip": false,
721
+ "single_word": false,
722
+ "special": true
723
+ },
724
+ "128090": {
725
+ "content": "<|reserved_special_token_82|>",
726
+ "lstrip": false,
727
+ "normalized": false,
728
+ "rstrip": false,
729
+ "single_word": false,
730
+ "special": true
731
+ },
732
+ "128091": {
733
+ "content": "<|reserved_special_token_83|>",
734
+ "lstrip": false,
735
+ "normalized": false,
736
+ "rstrip": false,
737
+ "single_word": false,
738
+ "special": true
739
+ },
740
+ "128092": {
741
+ "content": "<|reserved_special_token_84|>",
742
+ "lstrip": false,
743
+ "normalized": false,
744
+ "rstrip": false,
745
+ "single_word": false,
746
+ "special": true
747
+ },
748
+ "128093": {
749
+ "content": "<|reserved_special_token_85|>",
750
+ "lstrip": false,
751
+ "normalized": false,
752
+ "rstrip": false,
753
+ "single_word": false,
754
+ "special": true
755
+ },
756
+ "128094": {
757
+ "content": "<|reserved_special_token_86|>",
758
+ "lstrip": false,
759
+ "normalized": false,
760
+ "rstrip": false,
761
+ "single_word": false,
762
+ "special": true
763
+ },
764
+ "128095": {
765
+ "content": "<|reserved_special_token_87|>",
766
+ "lstrip": false,
767
+ "normalized": false,
768
+ "rstrip": false,
769
+ "single_word": false,
770
+ "special": true
771
+ },
772
+ "128096": {
773
+ "content": "<|reserved_special_token_88|>",
774
+ "lstrip": false,
775
+ "normalized": false,
776
+ "rstrip": false,
777
+ "single_word": false,
778
+ "special": true
779
+ },
780
+ "128097": {
781
+ "content": "<|reserved_special_token_89|>",
782
+ "lstrip": false,
783
+ "normalized": false,
784
+ "rstrip": false,
785
+ "single_word": false,
786
+ "special": true
787
+ },
788
+ "128098": {
789
+ "content": "<|reserved_special_token_90|>",
790
+ "lstrip": false,
791
+ "normalized": false,
792
+ "rstrip": false,
793
+ "single_word": false,
794
+ "special": true
795
+ },
796
+ "128099": {
797
+ "content": "<|reserved_special_token_91|>",
798
+ "lstrip": false,
799
+ "normalized": false,
800
+ "rstrip": false,
801
+ "single_word": false,
802
+ "special": true
803
+ },
804
+ "128100": {
805
+ "content": "<|reserved_special_token_92|>",
806
+ "lstrip": false,
807
+ "normalized": false,
808
+ "rstrip": false,
809
+ "single_word": false,
810
+ "special": true
811
+ },
812
+ "128101": {
813
+ "content": "<|reserved_special_token_93|>",
814
+ "lstrip": false,
815
+ "normalized": false,
816
+ "rstrip": false,
817
+ "single_word": false,
818
+ "special": true
819
+ },
820
+ "128102": {
821
+ "content": "<|reserved_special_token_94|>",
822
+ "lstrip": false,
823
+ "normalized": false,
824
+ "rstrip": false,
825
+ "single_word": false,
826
+ "special": true
827
+ },
828
+ "128103": {
829
+ "content": "<|reserved_special_token_95|>",
830
+ "lstrip": false,
831
+ "normalized": false,
832
+ "rstrip": false,
833
+ "single_word": false,
834
+ "special": true
835
+ },
836
+ "128104": {
837
+ "content": "<|reserved_special_token_96|>",
838
+ "lstrip": false,
839
+ "normalized": false,
840
+ "rstrip": false,
841
+ "single_word": false,
842
+ "special": true
843
+ },
844
+ "128105": {
845
+ "content": "<|reserved_special_token_97|>",
846
+ "lstrip": false,
847
+ "normalized": false,
848
+ "rstrip": false,
849
+ "single_word": false,
850
+ "special": true
851
+ },
852
+ "128106": {
853
+ "content": "<|reserved_special_token_98|>",
854
+ "lstrip": false,
855
+ "normalized": false,
856
+ "rstrip": false,
857
+ "single_word": false,
858
+ "special": true
859
+ },
860
+ "128107": {
861
+ "content": "<|reserved_special_token_99|>",
862
+ "lstrip": false,
863
+ "normalized": false,
864
+ "rstrip": false,
865
+ "single_word": false,
866
+ "special": true
867
+ },
868
+ "128108": {
869
+ "content": "<|reserved_special_token_100|>",
870
+ "lstrip": false,
871
+ "normalized": false,
872
+ "rstrip": false,
873
+ "single_word": false,
874
+ "special": true
875
+ },
876
+ "128109": {
877
+ "content": "<|reserved_special_token_101|>",
878
+ "lstrip": false,
879
+ "normalized": false,
880
+ "rstrip": false,
881
+ "single_word": false,
882
+ "special": true
883
+ },
884
+ "128110": {
885
+ "content": "<|reserved_special_token_102|>",
886
+ "lstrip": false,
887
+ "normalized": false,
888
+ "rstrip": false,
889
+ "single_word": false,
890
+ "special": true
891
+ },
892
+ "128111": {
893
+ "content": "<|reserved_special_token_103|>",
894
+ "lstrip": false,
895
+ "normalized": false,
896
+ "rstrip": false,
897
+ "single_word": false,
898
+ "special": true
899
+ },
900
+ "128112": {
901
+ "content": "<|reserved_special_token_104|>",
902
+ "lstrip": false,
903
+ "normalized": false,
904
+ "rstrip": false,
905
+ "single_word": false,
906
+ "special": true
907
+ },
908
+ "128113": {
909
+ "content": "<|reserved_special_token_105|>",
910
+ "lstrip": false,
911
+ "normalized": false,
912
+ "rstrip": false,
913
+ "single_word": false,
914
+ "special": true
915
+ },
916
+ "128114": {
917
+ "content": "<|reserved_special_token_106|>",
918
+ "lstrip": false,
919
+ "normalized": false,
920
+ "rstrip": false,
921
+ "single_word": false,
922
+ "special": true
923
+ },
924
+ "128115": {
925
+ "content": "<|reserved_special_token_107|>",
926
+ "lstrip": false,
927
+ "normalized": false,
928
+ "rstrip": false,
929
+ "single_word": false,
930
+ "special": true
931
+ },
932
+ "128116": {
933
+ "content": "<|reserved_special_token_108|>",
934
+ "lstrip": false,
935
+ "normalized": false,
936
+ "rstrip": false,
937
+ "single_word": false,
938
+ "special": true
939
+ },
940
+ "128117": {
941
+ "content": "<|reserved_special_token_109|>",
942
+ "lstrip": false,
943
+ "normalized": false,
944
+ "rstrip": false,
945
+ "single_word": false,
946
+ "special": true
947
+ },
948
+ "128118": {
949
+ "content": "<|reserved_special_token_110|>",
950
+ "lstrip": false,
951
+ "normalized": false,
952
+ "rstrip": false,
953
+ "single_word": false,
954
+ "special": true
955
+ },
956
+ "128119": {
957
+ "content": "<|reserved_special_token_111|>",
958
+ "lstrip": false,
959
+ "normalized": false,
960
+ "rstrip": false,
961
+ "single_word": false,
962
+ "special": true
963
+ },
964
+ "128120": {
965
+ "content": "<|reserved_special_token_112|>",
966
+ "lstrip": false,
967
+ "normalized": false,
968
+ "rstrip": false,
969
+ "single_word": false,
970
+ "special": true
971
+ },
972
+ "128121": {
973
+ "content": "<|reserved_special_token_113|>",
974
+ "lstrip": false,
975
+ "normalized": false,
976
+ "rstrip": false,
977
+ "single_word": false,
978
+ "special": true
979
+ },
980
+ "128122": {
981
+ "content": "<|reserved_special_token_114|>",
982
+ "lstrip": false,
983
+ "normalized": false,
984
+ "rstrip": false,
985
+ "single_word": false,
986
+ "special": true
987
+ },
988
+ "128123": {
989
+ "content": "<|reserved_special_token_115|>",
990
+ "lstrip": false,
991
+ "normalized": false,
992
+ "rstrip": false,
993
+ "single_word": false,
994
+ "special": true
995
+ },
996
+ "128124": {
997
+ "content": "<|reserved_special_token_116|>",
998
+ "lstrip": false,
999
+ "normalized": false,
1000
+ "rstrip": false,
1001
+ "single_word": false,
1002
+ "special": true
1003
+ },
1004
+ "128125": {
1005
+ "content": "<|reserved_special_token_117|>",
1006
+ "lstrip": false,
1007
+ "normalized": false,
1008
+ "rstrip": false,
1009
+ "single_word": false,
1010
+ "special": true
1011
+ },
1012
+ "128126": {
1013
+ "content": "<|reserved_special_token_118|>",
1014
+ "lstrip": false,
1015
+ "normalized": false,
1016
+ "rstrip": false,
1017
+ "single_word": false,
1018
+ "special": true
1019
+ },
1020
+ "128127": {
1021
+ "content": "<|reserved_special_token_119|>",
1022
+ "lstrip": false,
1023
+ "normalized": false,
1024
+ "rstrip": false,
1025
+ "single_word": false,
1026
+ "special": true
1027
+ },
1028
+ "128128": {
1029
+ "content": "<|reserved_special_token_120|>",
1030
+ "lstrip": false,
1031
+ "normalized": false,
1032
+ "rstrip": false,
1033
+ "single_word": false,
1034
+ "special": true
1035
+ },
1036
+ "128129": {
1037
+ "content": "<|reserved_special_token_121|>",
1038
+ "lstrip": false,
1039
+ "normalized": false,
1040
+ "rstrip": false,
1041
+ "single_word": false,
1042
+ "special": true
1043
+ },
1044
+ "128130": {
1045
+ "content": "<|reserved_special_token_122|>",
1046
+ "lstrip": false,
1047
+ "normalized": false,
1048
+ "rstrip": false,
1049
+ "single_word": false,
1050
+ "special": true
1051
+ },
1052
+ "128131": {
1053
+ "content": "<|reserved_special_token_123|>",
1054
+ "lstrip": false,
1055
+ "normalized": false,
1056
+ "rstrip": false,
1057
+ "single_word": false,
1058
+ "special": true
1059
+ },
1060
+ "128132": {
1061
+ "content": "<|reserved_special_token_124|>",
1062
+ "lstrip": false,
1063
+ "normalized": false,
1064
+ "rstrip": false,
1065
+ "single_word": false,
1066
+ "special": true
1067
+ },
1068
+ "128133": {
1069
+ "content": "<|reserved_special_token_125|>",
1070
+ "lstrip": false,
1071
+ "normalized": false,
1072
+ "rstrip": false,
1073
+ "single_word": false,
1074
+ "special": true
1075
+ },
1076
+ "128134": {
1077
+ "content": "<|reserved_special_token_126|>",
1078
+ "lstrip": false,
1079
+ "normalized": false,
1080
+ "rstrip": false,
1081
+ "single_word": false,
1082
+ "special": true
1083
+ },
1084
+ "128135": {
1085
+ "content": "<|reserved_special_token_127|>",
1086
+ "lstrip": false,
1087
+ "normalized": false,
1088
+ "rstrip": false,
1089
+ "single_word": false,
1090
+ "special": true
1091
+ },
1092
+ "128136": {
1093
+ "content": "<|reserved_special_token_128|>",
1094
+ "lstrip": false,
1095
+ "normalized": false,
1096
+ "rstrip": false,
1097
+ "single_word": false,
1098
+ "special": true
1099
+ },
1100
+ "128137": {
1101
+ "content": "<|reserved_special_token_129|>",
1102
+ "lstrip": false,
1103
+ "normalized": false,
1104
+ "rstrip": false,
1105
+ "single_word": false,
1106
+ "special": true
1107
+ },
1108
+ "128138": {
1109
+ "content": "<|reserved_special_token_130|>",
1110
+ "lstrip": false,
1111
+ "normalized": false,
1112
+ "rstrip": false,
1113
+ "single_word": false,
1114
+ "special": true
1115
+ },
1116
+ "128139": {
1117
+ "content": "<|reserved_special_token_131|>",
1118
+ "lstrip": false,
1119
+ "normalized": false,
1120
+ "rstrip": false,
1121
+ "single_word": false,
1122
+ "special": true
1123
+ },
1124
+ "128140": {
1125
+ "content": "<|reserved_special_token_132|>",
1126
+ "lstrip": false,
1127
+ "normalized": false,
1128
+ "rstrip": false,
1129
+ "single_word": false,
1130
+ "special": true
1131
+ },
1132
+ "128141": {
1133
+ "content": "<|reserved_special_token_133|>",
1134
+ "lstrip": false,
1135
+ "normalized": false,
1136
+ "rstrip": false,
1137
+ "single_word": false,
1138
+ "special": true
1139
+ },
1140
+ "128142": {
1141
+ "content": "<|reserved_special_token_134|>",
1142
+ "lstrip": false,
1143
+ "normalized": false,
1144
+ "rstrip": false,
1145
+ "single_word": false,
1146
+ "special": true
1147
+ },
1148
+ "128143": {
1149
+ "content": "<|reserved_special_token_135|>",
1150
+ "lstrip": false,
1151
+ "normalized": false,
1152
+ "rstrip": false,
1153
+ "single_word": false,
1154
+ "special": true
1155
+ },
1156
+ "128144": {
1157
+ "content": "<|reserved_special_token_136|>",
1158
+ "lstrip": false,
1159
+ "normalized": false,
1160
+ "rstrip": false,
1161
+ "single_word": false,
1162
+ "special": true
1163
+ },
1164
+ "128145": {
1165
+ "content": "<|reserved_special_token_137|>",
1166
+ "lstrip": false,
1167
+ "normalized": false,
1168
+ "rstrip": false,
1169
+ "single_word": false,
1170
+ "special": true
1171
+ },
1172
+ "128146": {
1173
+ "content": "<|reserved_special_token_138|>",
1174
+ "lstrip": false,
1175
+ "normalized": false,
1176
+ "rstrip": false,
1177
+ "single_word": false,
1178
+ "special": true
1179
+ },
1180
+ "128147": {
1181
+ "content": "<|reserved_special_token_139|>",
1182
+ "lstrip": false,
1183
+ "normalized": false,
1184
+ "rstrip": false,
1185
+ "single_word": false,
1186
+ "special": true
1187
+ },
1188
+ "128148": {
1189
+ "content": "<|reserved_special_token_140|>",
1190
+ "lstrip": false,
1191
+ "normalized": false,
1192
+ "rstrip": false,
1193
+ "single_word": false,
1194
+ "special": true
1195
+ },
1196
+ "128149": {
1197
+ "content": "<|reserved_special_token_141|>",
1198
+ "lstrip": false,
1199
+ "normalized": false,
1200
+ "rstrip": false,
1201
+ "single_word": false,
1202
+ "special": true
1203
+ },
1204
+ "128150": {
1205
+ "content": "<|reserved_special_token_142|>",
1206
+ "lstrip": false,
1207
+ "normalized": false,
1208
+ "rstrip": false,
1209
+ "single_word": false,
1210
+ "special": true
1211
+ },
1212
+ "128151": {
1213
+ "content": "<|reserved_special_token_143|>",
1214
+ "lstrip": false,
1215
+ "normalized": false,
1216
+ "rstrip": false,
1217
+ "single_word": false,
1218
+ "special": true
1219
+ },
1220
+ "128152": {
1221
+ "content": "<|reserved_special_token_144|>",
1222
+ "lstrip": false,
1223
+ "normalized": false,
1224
+ "rstrip": false,
1225
+ "single_word": false,
1226
+ "special": true
1227
+ },
1228
+ "128153": {
1229
+ "content": "<|reserved_special_token_145|>",
1230
+ "lstrip": false,
1231
+ "normalized": false,
1232
+ "rstrip": false,
1233
+ "single_word": false,
1234
+ "special": true
1235
+ },
1236
+ "128154": {
1237
+ "content": "<|reserved_special_token_146|>",
1238
+ "lstrip": false,
1239
+ "normalized": false,
1240
+ "rstrip": false,
1241
+ "single_word": false,
1242
+ "special": true
1243
+ },
1244
+ "128155": {
1245
+ "content": "<|reserved_special_token_147|>",
1246
+ "lstrip": false,
1247
+ "normalized": false,
1248
+ "rstrip": false,
1249
+ "single_word": false,
1250
+ "special": true
1251
+ },
1252
+ "128156": {
1253
+ "content": "<|reserved_special_token_148|>",
1254
+ "lstrip": false,
1255
+ "normalized": false,
1256
+ "rstrip": false,
1257
+ "single_word": false,
1258
+ "special": true
1259
+ },
1260
+ "128157": {
1261
+ "content": "<|reserved_special_token_149|>",
1262
+ "lstrip": false,
1263
+ "normalized": false,
1264
+ "rstrip": false,
1265
+ "single_word": false,
1266
+ "special": true
1267
+ },
1268
+ "128158": {
1269
+ "content": "<|reserved_special_token_150|>",
1270
+ "lstrip": false,
1271
+ "normalized": false,
1272
+ "rstrip": false,
1273
+ "single_word": false,
1274
+ "special": true
1275
+ },
1276
+ "128159": {
1277
+ "content": "<|reserved_special_token_151|>",
1278
+ "lstrip": false,
1279
+ "normalized": false,
1280
+ "rstrip": false,
1281
+ "single_word": false,
1282
+ "special": true
1283
+ },
1284
+ "128160": {
1285
+ "content": "<|reserved_special_token_152|>",
1286
+ "lstrip": false,
1287
+ "normalized": false,
1288
+ "rstrip": false,
1289
+ "single_word": false,
1290
+ "special": true
1291
+ },
1292
+ "128161": {
1293
+ "content": "<|reserved_special_token_153|>",
1294
+ "lstrip": false,
1295
+ "normalized": false,
1296
+ "rstrip": false,
1297
+ "single_word": false,
1298
+ "special": true
1299
+ },
1300
+ "128162": {
1301
+ "content": "<|reserved_special_token_154|>",
1302
+ "lstrip": false,
1303
+ "normalized": false,
1304
+ "rstrip": false,
1305
+ "single_word": false,
1306
+ "special": true
1307
+ },
1308
+ "128163": {
1309
+ "content": "<|reserved_special_token_155|>",
1310
+ "lstrip": false,
1311
+ "normalized": false,
1312
+ "rstrip": false,
1313
+ "single_word": false,
1314
+ "special": true
1315
+ },
1316
+ "128164": {
1317
+ "content": "<|reserved_special_token_156|>",
1318
+ "lstrip": false,
1319
+ "normalized": false,
1320
+ "rstrip": false,
1321
+ "single_word": false,
1322
+ "special": true
1323
+ },
1324
+ "128165": {
1325
+ "content": "<|reserved_special_token_157|>",
1326
+ "lstrip": false,
1327
+ "normalized": false,
1328
+ "rstrip": false,
1329
+ "single_word": false,
1330
+ "special": true
1331
+ },
1332
+ "128166": {
1333
+ "content": "<|reserved_special_token_158|>",
1334
+ "lstrip": false,
1335
+ "normalized": false,
1336
+ "rstrip": false,
1337
+ "single_word": false,
1338
+ "special": true
1339
+ },
1340
+ "128167": {
1341
+ "content": "<|reserved_special_token_159|>",
1342
+ "lstrip": false,
1343
+ "normalized": false,
1344
+ "rstrip": false,
1345
+ "single_word": false,
1346
+ "special": true
1347
+ },
1348
+ "128168": {
1349
+ "content": "<|reserved_special_token_160|>",
1350
+ "lstrip": false,
1351
+ "normalized": false,
1352
+ "rstrip": false,
1353
+ "single_word": false,
1354
+ "special": true
1355
+ },
1356
+ "128169": {
1357
+ "content": "<|reserved_special_token_161|>",
1358
+ "lstrip": false,
1359
+ "normalized": false,
1360
+ "rstrip": false,
1361
+ "single_word": false,
1362
+ "special": true
1363
+ },
1364
+ "128170": {
1365
+ "content": "<|reserved_special_token_162|>",
1366
+ "lstrip": false,
1367
+ "normalized": false,
1368
+ "rstrip": false,
1369
+ "single_word": false,
1370
+ "special": true
1371
+ },
1372
+ "128171": {
1373
+ "content": "<|reserved_special_token_163|>",
1374
+ "lstrip": false,
1375
+ "normalized": false,
1376
+ "rstrip": false,
1377
+ "single_word": false,
1378
+ "special": true
1379
+ },
1380
+ "128172": {
1381
+ "content": "<|reserved_special_token_164|>",
1382
+ "lstrip": false,
1383
+ "normalized": false,
1384
+ "rstrip": false,
1385
+ "single_word": false,
1386
+ "special": true
1387
+ },
1388
+ "128173": {
1389
+ "content": "<|reserved_special_token_165|>",
1390
+ "lstrip": false,
1391
+ "normalized": false,
1392
+ "rstrip": false,
1393
+ "single_word": false,
1394
+ "special": true
1395
+ },
1396
+ "128174": {
1397
+ "content": "<|reserved_special_token_166|>",
1398
+ "lstrip": false,
1399
+ "normalized": false,
1400
+ "rstrip": false,
1401
+ "single_word": false,
1402
+ "special": true
1403
+ },
1404
+ "128175": {
1405
+ "content": "<|reserved_special_token_167|>",
1406
+ "lstrip": false,
1407
+ "normalized": false,
1408
+ "rstrip": false,
1409
+ "single_word": false,
1410
+ "special": true
1411
+ },
1412
+ "128176": {
1413
+ "content": "<|reserved_special_token_168|>",
1414
+ "lstrip": false,
1415
+ "normalized": false,
1416
+ "rstrip": false,
1417
+ "single_word": false,
1418
+ "special": true
1419
+ },
1420
+ "128177": {
1421
+ "content": "<|reserved_special_token_169|>",
1422
+ "lstrip": false,
1423
+ "normalized": false,
1424
+ "rstrip": false,
1425
+ "single_word": false,
1426
+ "special": true
1427
+ },
1428
+ "128178": {
1429
+ "content": "<|reserved_special_token_170|>",
1430
+ "lstrip": false,
1431
+ "normalized": false,
1432
+ "rstrip": false,
1433
+ "single_word": false,
1434
+ "special": true
1435
+ },
1436
+ "128179": {
1437
+ "content": "<|reserved_special_token_171|>",
1438
+ "lstrip": false,
1439
+ "normalized": false,
1440
+ "rstrip": false,
1441
+ "single_word": false,
1442
+ "special": true
1443
+ },
1444
+ "128180": {
1445
+ "content": "<|reserved_special_token_172|>",
1446
+ "lstrip": false,
1447
+ "normalized": false,
1448
+ "rstrip": false,
1449
+ "single_word": false,
1450
+ "special": true
1451
+ },
1452
+ "128181": {
1453
+ "content": "<|reserved_special_token_173|>",
1454
+ "lstrip": false,
1455
+ "normalized": false,
1456
+ "rstrip": false,
1457
+ "single_word": false,
1458
+ "special": true
1459
+ },
1460
+ "128182": {
1461
+ "content": "<|reserved_special_token_174|>",
1462
+ "lstrip": false,
1463
+ "normalized": false,
1464
+ "rstrip": false,
1465
+ "single_word": false,
1466
+ "special": true
1467
+ },
1468
+ "128183": {
1469
+ "content": "<|reserved_special_token_175|>",
1470
+ "lstrip": false,
1471
+ "normalized": false,
1472
+ "rstrip": false,
1473
+ "single_word": false,
1474
+ "special": true
1475
+ },
1476
+ "128184": {
1477
+ "content": "<|reserved_special_token_176|>",
1478
+ "lstrip": false,
1479
+ "normalized": false,
1480
+ "rstrip": false,
1481
+ "single_word": false,
1482
+ "special": true
1483
+ },
1484
+ "128185": {
1485
+ "content": "<|reserved_special_token_177|>",
1486
+ "lstrip": false,
1487
+ "normalized": false,
1488
+ "rstrip": false,
1489
+ "single_word": false,
1490
+ "special": true
1491
+ },
1492
+ "128186": {
1493
+ "content": "<|reserved_special_token_178|>",
1494
+ "lstrip": false,
1495
+ "normalized": false,
1496
+ "rstrip": false,
1497
+ "single_word": false,
1498
+ "special": true
1499
+ },
1500
+ "128187": {
1501
+ "content": "<|reserved_special_token_179|>",
1502
+ "lstrip": false,
1503
+ "normalized": false,
1504
+ "rstrip": false,
1505
+ "single_word": false,
1506
+ "special": true
1507
+ },
1508
+ "128188": {
1509
+ "content": "<|reserved_special_token_180|>",
1510
+ "lstrip": false,
1511
+ "normalized": false,
1512
+ "rstrip": false,
1513
+ "single_word": false,
1514
+ "special": true
1515
+ },
1516
+ "128189": {
1517
+ "content": "<|reserved_special_token_181|>",
1518
+ "lstrip": false,
1519
+ "normalized": false,
1520
+ "rstrip": false,
1521
+ "single_word": false,
1522
+ "special": true
1523
+ },
1524
+ "128190": {
1525
+ "content": "<|reserved_special_token_182|>",
1526
+ "lstrip": false,
1527
+ "normalized": false,
1528
+ "rstrip": false,
1529
+ "single_word": false,
1530
+ "special": true
1531
+ },
1532
+ "128191": {
1533
+ "content": "<|reserved_special_token_183|>",
1534
+ "lstrip": false,
1535
+ "normalized": false,
1536
+ "rstrip": false,
1537
+ "single_word": false,
1538
+ "special": true
1539
+ },
1540
+ "128192": {
1541
+ "content": "<|reserved_special_token_184|>",
1542
+ "lstrip": false,
1543
+ "normalized": false,
1544
+ "rstrip": false,
1545
+ "single_word": false,
1546
+ "special": true
1547
+ },
1548
+ "128193": {
1549
+ "content": "<|reserved_special_token_185|>",
1550
+ "lstrip": false,
1551
+ "normalized": false,
1552
+ "rstrip": false,
1553
+ "single_word": false,
1554
+ "special": true
1555
+ },
1556
+ "128194": {
1557
+ "content": "<|reserved_special_token_186|>",
1558
+ "lstrip": false,
1559
+ "normalized": false,
1560
+ "rstrip": false,
1561
+ "single_word": false,
1562
+ "special": true
1563
+ },
1564
+ "128195": {
1565
+ "content": "<|reserved_special_token_187|>",
1566
+ "lstrip": false,
1567
+ "normalized": false,
1568
+ "rstrip": false,
1569
+ "single_word": false,
1570
+ "special": true
1571
+ },
1572
+ "128196": {
1573
+ "content": "<|reserved_special_token_188|>",
1574
+ "lstrip": false,
1575
+ "normalized": false,
1576
+ "rstrip": false,
1577
+ "single_word": false,
1578
+ "special": true
1579
+ },
1580
+ "128197": {
1581
+ "content": "<|reserved_special_token_189|>",
1582
+ "lstrip": false,
1583
+ "normalized": false,
1584
+ "rstrip": false,
1585
+ "single_word": false,
1586
+ "special": true
1587
+ },
1588
+ "128198": {
1589
+ "content": "<|reserved_special_token_190|>",
1590
+ "lstrip": false,
1591
+ "normalized": false,
1592
+ "rstrip": false,
1593
+ "single_word": false,
1594
+ "special": true
1595
+ },
1596
+ "128199": {
1597
+ "content": "<|reserved_special_token_191|>",
1598
+ "lstrip": false,
1599
+ "normalized": false,
1600
+ "rstrip": false,
1601
+ "single_word": false,
1602
+ "special": true
1603
+ },
1604
+ "128200": {
1605
+ "content": "<|reserved_special_token_192|>",
1606
+ "lstrip": false,
1607
+ "normalized": false,
1608
+ "rstrip": false,
1609
+ "single_word": false,
1610
+ "special": true
1611
+ },
1612
+ "128201": {
1613
+ "content": "<|reserved_special_token_193|>",
1614
+ "lstrip": false,
1615
+ "normalized": false,
1616
+ "rstrip": false,
1617
+ "single_word": false,
1618
+ "special": true
1619
+ },
1620
+ "128202": {
1621
+ "content": "<|reserved_special_token_194|>",
1622
+ "lstrip": false,
1623
+ "normalized": false,
1624
+ "rstrip": false,
1625
+ "single_word": false,
1626
+ "special": true
1627
+ },
1628
+ "128203": {
1629
+ "content": "<|reserved_special_token_195|>",
1630
+ "lstrip": false,
1631
+ "normalized": false,
1632
+ "rstrip": false,
1633
+ "single_word": false,
1634
+ "special": true
1635
+ },
1636
+ "128204": {
1637
+ "content": "<|reserved_special_token_196|>",
1638
+ "lstrip": false,
1639
+ "normalized": false,
1640
+ "rstrip": false,
1641
+ "single_word": false,
1642
+ "special": true
1643
+ },
1644
+ "128205": {
1645
+ "content": "<|reserved_special_token_197|>",
1646
+ "lstrip": false,
1647
+ "normalized": false,
1648
+ "rstrip": false,
1649
+ "single_word": false,
1650
+ "special": true
1651
+ },
1652
+ "128206": {
1653
+ "content": "<|reserved_special_token_198|>",
1654
+ "lstrip": false,
1655
+ "normalized": false,
1656
+ "rstrip": false,
1657
+ "single_word": false,
1658
+ "special": true
1659
+ },
1660
+ "128207": {
1661
+ "content": "<|reserved_special_token_199|>",
1662
+ "lstrip": false,
1663
+ "normalized": false,
1664
+ "rstrip": false,
1665
+ "single_word": false,
1666
+ "special": true
1667
+ },
1668
+ "128208": {
1669
+ "content": "<|reserved_special_token_200|>",
1670
+ "lstrip": false,
1671
+ "normalized": false,
1672
+ "rstrip": false,
1673
+ "single_word": false,
1674
+ "special": true
1675
+ },
1676
+ "128209": {
1677
+ "content": "<|reserved_special_token_201|>",
1678
+ "lstrip": false,
1679
+ "normalized": false,
1680
+ "rstrip": false,
1681
+ "single_word": false,
1682
+ "special": true
1683
+ },
1684
+ "128210": {
1685
+ "content": "<|reserved_special_token_202|>",
1686
+ "lstrip": false,
1687
+ "normalized": false,
1688
+ "rstrip": false,
1689
+ "single_word": false,
1690
+ "special": true
1691
+ },
1692
+ "128211": {
1693
+ "content": "<|reserved_special_token_203|>",
1694
+ "lstrip": false,
1695
+ "normalized": false,
1696
+ "rstrip": false,
1697
+ "single_word": false,
1698
+ "special": true
1699
+ },
1700
+ "128212": {
1701
+ "content": "<|reserved_special_token_204|>",
1702
+ "lstrip": false,
1703
+ "normalized": false,
1704
+ "rstrip": false,
1705
+ "single_word": false,
1706
+ "special": true
1707
+ },
1708
+ "128213": {
1709
+ "content": "<|reserved_special_token_205|>",
1710
+ "lstrip": false,
1711
+ "normalized": false,
1712
+ "rstrip": false,
1713
+ "single_word": false,
1714
+ "special": true
1715
+ },
1716
+ "128214": {
1717
+ "content": "<|reserved_special_token_206|>",
1718
+ "lstrip": false,
1719
+ "normalized": false,
1720
+ "rstrip": false,
1721
+ "single_word": false,
1722
+ "special": true
1723
+ },
1724
+ "128215": {
1725
+ "content": "<|reserved_special_token_207|>",
1726
+ "lstrip": false,
1727
+ "normalized": false,
1728
+ "rstrip": false,
1729
+ "single_word": false,
1730
+ "special": true
1731
+ },
1732
+ "128216": {
1733
+ "content": "<|reserved_special_token_208|>",
1734
+ "lstrip": false,
1735
+ "normalized": false,
1736
+ "rstrip": false,
1737
+ "single_word": false,
1738
+ "special": true
1739
+ },
1740
+ "128217": {
1741
+ "content": "<|reserved_special_token_209|>",
1742
+ "lstrip": false,
1743
+ "normalized": false,
1744
+ "rstrip": false,
1745
+ "single_word": false,
1746
+ "special": true
1747
+ },
1748
+ "128218": {
1749
+ "content": "<|reserved_special_token_210|>",
1750
+ "lstrip": false,
1751
+ "normalized": false,
1752
+ "rstrip": false,
1753
+ "single_word": false,
1754
+ "special": true
1755
+ },
1756
+ "128219": {
1757
+ "content": "<|reserved_special_token_211|>",
1758
+ "lstrip": false,
1759
+ "normalized": false,
1760
+ "rstrip": false,
1761
+ "single_word": false,
1762
+ "special": true
1763
+ },
1764
+ "128220": {
1765
+ "content": "<|reserved_special_token_212|>",
1766
+ "lstrip": false,
1767
+ "normalized": false,
1768
+ "rstrip": false,
1769
+ "single_word": false,
1770
+ "special": true
1771
+ },
1772
+ "128221": {
1773
+ "content": "<|reserved_special_token_213|>",
1774
+ "lstrip": false,
1775
+ "normalized": false,
1776
+ "rstrip": false,
1777
+ "single_word": false,
1778
+ "special": true
1779
+ },
1780
+ "128222": {
1781
+ "content": "<|reserved_special_token_214|>",
1782
+ "lstrip": false,
1783
+ "normalized": false,
1784
+ "rstrip": false,
1785
+ "single_word": false,
1786
+ "special": true
1787
+ },
1788
+ "128223": {
1789
+ "content": "<|reserved_special_token_215|>",
1790
+ "lstrip": false,
1791
+ "normalized": false,
1792
+ "rstrip": false,
1793
+ "single_word": false,
1794
+ "special": true
1795
+ },
1796
+ "128224": {
1797
+ "content": "<|reserved_special_token_216|>",
1798
+ "lstrip": false,
1799
+ "normalized": false,
1800
+ "rstrip": false,
1801
+ "single_word": false,
1802
+ "special": true
1803
+ },
1804
+ "128225": {
1805
+ "content": "<|reserved_special_token_217|>",
1806
+ "lstrip": false,
1807
+ "normalized": false,
1808
+ "rstrip": false,
1809
+ "single_word": false,
1810
+ "special": true
1811
+ },
1812
+ "128226": {
1813
+ "content": "<|reserved_special_token_218|>",
1814
+ "lstrip": false,
1815
+ "normalized": false,
1816
+ "rstrip": false,
1817
+ "single_word": false,
1818
+ "special": true
1819
+ },
1820
+ "128227": {
1821
+ "content": "<|reserved_special_token_219|>",
1822
+ "lstrip": false,
1823
+ "normalized": false,
1824
+ "rstrip": false,
1825
+ "single_word": false,
1826
+ "special": true
1827
+ },
1828
+ "128228": {
1829
+ "content": "<|reserved_special_token_220|>",
1830
+ "lstrip": false,
1831
+ "normalized": false,
1832
+ "rstrip": false,
1833
+ "single_word": false,
1834
+ "special": true
1835
+ },
1836
+ "128229": {
1837
+ "content": "<|reserved_special_token_221|>",
1838
+ "lstrip": false,
1839
+ "normalized": false,
1840
+ "rstrip": false,
1841
+ "single_word": false,
1842
+ "special": true
1843
+ },
1844
+ "128230": {
1845
+ "content": "<|reserved_special_token_222|>",
1846
+ "lstrip": false,
1847
+ "normalized": false,
1848
+ "rstrip": false,
1849
+ "single_word": false,
1850
+ "special": true
1851
+ },
1852
+ "128231": {
1853
+ "content": "<|reserved_special_token_223|>",
1854
+ "lstrip": false,
1855
+ "normalized": false,
1856
+ "rstrip": false,
1857
+ "single_word": false,
1858
+ "special": true
1859
+ },
1860
+ "128232": {
1861
+ "content": "<|reserved_special_token_224|>",
1862
+ "lstrip": false,
1863
+ "normalized": false,
1864
+ "rstrip": false,
1865
+ "single_word": false,
1866
+ "special": true
1867
+ },
1868
+ "128233": {
1869
+ "content": "<|reserved_special_token_225|>",
1870
+ "lstrip": false,
1871
+ "normalized": false,
1872
+ "rstrip": false,
1873
+ "single_word": false,
1874
+ "special": true
1875
+ },
1876
+ "128234": {
1877
+ "content": "<|reserved_special_token_226|>",
1878
+ "lstrip": false,
1879
+ "normalized": false,
1880
+ "rstrip": false,
1881
+ "single_word": false,
1882
+ "special": true
1883
+ },
1884
+ "128235": {
1885
+ "content": "<|reserved_special_token_227|>",
1886
+ "lstrip": false,
1887
+ "normalized": false,
1888
+ "rstrip": false,
1889
+ "single_word": false,
1890
+ "special": true
1891
+ },
1892
+ "128236": {
1893
+ "content": "<|reserved_special_token_228|>",
1894
+ "lstrip": false,
1895
+ "normalized": false,
1896
+ "rstrip": false,
1897
+ "single_word": false,
1898
+ "special": true
1899
+ },
1900
+ "128237": {
1901
+ "content": "<|reserved_special_token_229|>",
1902
+ "lstrip": false,
1903
+ "normalized": false,
1904
+ "rstrip": false,
1905
+ "single_word": false,
1906
+ "special": true
1907
+ },
1908
+ "128238": {
1909
+ "content": "<|reserved_special_token_230|>",
1910
+ "lstrip": false,
1911
+ "normalized": false,
1912
+ "rstrip": false,
1913
+ "single_word": false,
1914
+ "special": true
1915
+ },
1916
+ "128239": {
1917
+ "content": "<|reserved_special_token_231|>",
1918
+ "lstrip": false,
1919
+ "normalized": false,
1920
+ "rstrip": false,
1921
+ "single_word": false,
1922
+ "special": true
1923
+ },
1924
+ "128240": {
1925
+ "content": "<|reserved_special_token_232|>",
1926
+ "lstrip": false,
1927
+ "normalized": false,
1928
+ "rstrip": false,
1929
+ "single_word": false,
1930
+ "special": true
1931
+ },
1932
+ "128241": {
1933
+ "content": "<|reserved_special_token_233|>",
1934
+ "lstrip": false,
1935
+ "normalized": false,
1936
+ "rstrip": false,
1937
+ "single_word": false,
1938
+ "special": true
1939
+ },
1940
+ "128242": {
1941
+ "content": "<|reserved_special_token_234|>",
1942
+ "lstrip": false,
1943
+ "normalized": false,
1944
+ "rstrip": false,
1945
+ "single_word": false,
1946
+ "special": true
1947
+ },
1948
+ "128243": {
1949
+ "content": "<|reserved_special_token_235|>",
1950
+ "lstrip": false,
1951
+ "normalized": false,
1952
+ "rstrip": false,
1953
+ "single_word": false,
1954
+ "special": true
1955
+ },
1956
+ "128244": {
1957
+ "content": "<|reserved_special_token_236|>",
1958
+ "lstrip": false,
1959
+ "normalized": false,
1960
+ "rstrip": false,
1961
+ "single_word": false,
1962
+ "special": true
1963
+ },
1964
+ "128245": {
1965
+ "content": "<|reserved_special_token_237|>",
1966
+ "lstrip": false,
1967
+ "normalized": false,
1968
+ "rstrip": false,
1969
+ "single_word": false,
1970
+ "special": true
1971
+ },
1972
+ "128246": {
1973
+ "content": "<|reserved_special_token_238|>",
1974
+ "lstrip": false,
1975
+ "normalized": false,
1976
+ "rstrip": false,
1977
+ "single_word": false,
1978
+ "special": true
1979
+ },
1980
+ "128247": {
1981
+ "content": "<|reserved_special_token_239|>",
1982
+ "lstrip": false,
1983
+ "normalized": false,
1984
+ "rstrip": false,
1985
+ "single_word": false,
1986
+ "special": true
1987
+ },
1988
+ "128248": {
1989
+ "content": "<|reserved_special_token_240|>",
1990
+ "lstrip": false,
1991
+ "normalized": false,
1992
+ "rstrip": false,
1993
+ "single_word": false,
1994
+ "special": true
1995
+ },
1996
+ "128249": {
1997
+ "content": "<|reserved_special_token_241|>",
1998
+ "lstrip": false,
1999
+ "normalized": false,
2000
+ "rstrip": false,
2001
+ "single_word": false,
2002
+ "special": true
2003
+ },
2004
+ "128250": {
2005
+ "content": "<|reserved_special_token_242|>",
2006
+ "lstrip": false,
2007
+ "normalized": false,
2008
+ "rstrip": false,
2009
+ "single_word": false,
2010
+ "special": true
2011
+ },
2012
+ "128251": {
2013
+ "content": "<|reserved_special_token_243|>",
2014
+ "lstrip": false,
2015
+ "normalized": false,
2016
+ "rstrip": false,
2017
+ "single_word": false,
2018
+ "special": true
2019
+ },
2020
+ "128252": {
2021
+ "content": "<|reserved_special_token_244|>",
2022
+ "lstrip": false,
2023
+ "normalized": false,
2024
+ "rstrip": false,
2025
+ "single_word": false,
2026
+ "special": true
2027
+ },
2028
+ "128253": {
2029
+ "content": "<|reserved_special_token_245|>",
2030
+ "lstrip": false,
2031
+ "normalized": false,
2032
+ "rstrip": false,
2033
+ "single_word": false,
2034
+ "special": true
2035
+ },
2036
+ "128254": {
2037
+ "content": "<|reserved_special_token_246|>",
2038
+ "lstrip": false,
2039
+ "normalized": false,
2040
+ "rstrip": false,
2041
+ "single_word": false,
2042
+ "special": true
2043
+ },
2044
+ "128255": {
2045
+ "content": "<|reserved_special_token_247|>",
2046
+ "lstrip": false,
2047
+ "normalized": false,
2048
+ "rstrip": false,
2049
+ "single_word": false,
2050
+ "special": true
2051
+ }
2052
+ },
2053
+ "bos_token": "<|begin_of_text|>",
2054
+ "clean_up_tokenization_spaces": true,
2055
+ "eos_token": "<|eot_id|>",
2056
+ "extra_special_tokens": {},
2057
+ "model_input_names": [
2058
+ "input_ids",
2059
+ "attention_mask"
2060
+ ],
2061
+ "model_max_length": 131072,
2062
+ "pad_token": "<|finetune_right_pad_id|>",
2063
+ "padding_side": "right",
2064
+ "tokenizer_class": "PreTrainedTokenizer",
2065
+ "unk_token": null
2066
+ }
trainer_state.json ADDED
@@ -0,0 +1,1983 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.7,
6
+ "eval_steps": 15,
7
+ "global_step": 105,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0,
14
+ "eval_Per_token_kl_mean": 0.028602013221153848,
15
+ "eval_average_num_turns": 34.35897435897436,
16
+ "eval_clip_ratio/high_max": 0.0,
17
+ "eval_clip_ratio/high_mean": 0.0,
18
+ "eval_clip_ratio/low_mean": 0.0,
19
+ "eval_clip_ratio/low_min": 0.0,
20
+ "eval_clip_ratio/region_mean": 0.0,
21
+ "eval_completion_length": 2341.974421574519,
22
+ "eval_loss": 0.26710209250450134,
23
+ "eval_reward": 1.435897456911894,
24
+ "eval_reward_std": 2.163183496548579,
25
+ "eval_rewards/format_error_penalty": -0.06837606888550979,
26
+ "eval_rewards/task_completion_reward": 0.41025641904427457,
27
+ "eval_runtime": 2865.8873,
28
+ "eval_samples_per_second": 0.04,
29
+ "eval_steps_per_second": 0.005,
30
+ "step": 0
31
+ },
32
+ {
33
+ "Per_token_kl_mean": 0.030059814453125,
34
+ "Unclipped Grad Norm": 2.5555081367492676,
35
+ "average_num_turns": 30.5,
36
+ "clip_ratio/high_max": 0.0,
37
+ "clip_ratio/high_mean": 0.0,
38
+ "clip_ratio/low_mean": 0.0,
39
+ "clip_ratio/low_min": 0.0,
40
+ "clip_ratio/region_mean": 0.0,
41
+ "completion_length": 2132.5833740234375,
42
+ "complexity_score": 6.0,
43
+ "epoch": 0.006666666666666667,
44
+ "learning_rate": 0.0,
45
+ "loss": 0.0005,
46
+ "num_customer_asks": 2.0,
47
+ "reward": 1.722222238779068,
48
+ "reward_std": 1.5796964764595032,
49
+ "rewards/format_error_penalty": -0.0555555559694767,
50
+ "rewards/task_completion_reward": 0.4722222313284874,
51
+ "step": 1
52
+ },
53
+ {
54
+ "Per_token_kl_mean": 0.030059814453125,
55
+ "Unclipped Grad Norm": 2.5553574562072754,
56
+ "clip_ratio/high_max": 0.0,
57
+ "clip_ratio/high_mean": 0.0,
58
+ "clip_ratio/low_mean": 0.0,
59
+ "clip_ratio/low_min": 0.0,
60
+ "clip_ratio/region_mean": 0.0,
61
+ "epoch": 0.013333333333333334,
62
+ "learning_rate": 3.3333333333333334e-08,
63
+ "loss": 0.0005,
64
+ "step": 2
65
+ },
66
+ {
67
+ "Per_token_kl_mean": 0.02203369140625,
68
+ "Unclipped Grad Norm": 2.6852898597717285,
69
+ "average_num_turns": 28.166666666666664,
70
+ "clip_ratio/high_max": 0.0,
71
+ "clip_ratio/high_mean": 0.0,
72
+ "clip_ratio/low_mean": 0.0,
73
+ "clip_ratio/low_min": 0.0,
74
+ "clip_ratio/region_mean": 0.0,
75
+ "completion_length": 1803.0000305175781,
76
+ "complexity_score": 6.0,
77
+ "epoch": 0.02,
78
+ "learning_rate": 6.666666666666667e-08,
79
+ "loss": 0.095,
80
+ "num_customer_asks": 2.0,
81
+ "reward": 3.055555582046509,
82
+ "reward_std": 1.5523057281970978,
83
+ "rewards/format_error_penalty": -0.0555555559694767,
84
+ "rewards/task_completion_reward": 0.8055555671453476,
85
+ "step": 3
86
+ },
87
+ {
88
+ "Per_token_kl_mean": 0.022064208984375,
89
+ "Unclipped Grad Norm": 2.5881826877593994,
90
+ "clip_ratio/high_max": 0.002588869712781161,
91
+ "clip_ratio/high_mean": 0.0017693563713692129,
92
+ "clip_ratio/low_mean": 0.00048547789629083127,
93
+ "clip_ratio/low_min": 0.0,
94
+ "clip_ratio/region_mean": 0.0022548342822119594,
95
+ "epoch": 0.02666666666666667,
96
+ "learning_rate": 1e-07,
97
+ "loss": 0.0957,
98
+ "step": 4
99
+ },
100
+ {
101
+ "Per_token_kl_mean": 0.03814697265625,
102
+ "Unclipped Grad Norm": 2.3860931396484375,
103
+ "average_num_turns": 32.0,
104
+ "clip_ratio/high_max": 0.0,
105
+ "clip_ratio/high_mean": 0.0,
106
+ "clip_ratio/low_mean": 0.0,
107
+ "clip_ratio/low_min": 0.0,
108
+ "clip_ratio/region_mean": 0.0,
109
+ "completion_length": 2203.5833435058594,
110
+ "complexity_score": 6.0,
111
+ "epoch": 0.03333333333333333,
112
+ "learning_rate": 1.3333333333333334e-07,
113
+ "loss": -0.1129,
114
+ "num_customer_asks": 2.75,
115
+ "reward": 0.5555555336177349,
116
+ "reward_std": 1.7567797005176544,
117
+ "rewards/format_error_penalty": -0.1111111119389534,
118
+ "rewards/task_completion_reward": 0.2222222276031971,
119
+ "step": 5
120
+ },
121
+ {
122
+ "Per_token_kl_mean": 0.038330078125,
123
+ "Unclipped Grad Norm": 2.332904577255249,
124
+ "clip_ratio/high_max": 0.0035354613210074604,
125
+ "clip_ratio/high_mean": 0.002562987479905132,
126
+ "clip_ratio/low_mean": 0.0006413227893062867,
127
+ "clip_ratio/low_min": 0.0002706883242353797,
128
+ "clip_ratio/region_mean": 0.0032043102546595037,
129
+ "epoch": 0.04,
130
+ "learning_rate": 1.6666666666666665e-07,
131
+ "loss": -0.113,
132
+ "step": 6
133
+ },
134
+ {
135
+ "Per_token_kl_mean": 0.0321044921875,
136
+ "Unclipped Grad Norm": 7.160241603851318,
137
+ "average_num_turns": 32.5,
138
+ "clip_ratio/high_max": 0.0,
139
+ "clip_ratio/high_mean": 0.0,
140
+ "clip_ratio/low_mean": 0.0,
141
+ "clip_ratio/low_min": 0.0,
142
+ "clip_ratio/region_mean": 0.0,
143
+ "completion_length": 2051.166717529297,
144
+ "complexity_score": 6.0,
145
+ "epoch": 0.04666666666666667,
146
+ "learning_rate": 2e-07,
147
+ "loss": -0.2645,
148
+ "num_customer_asks": 3.0,
149
+ "reward": 1.750000037252903,
150
+ "reward_std": 1.7073046267032623,
151
+ "rewards/format_error_penalty": -0.08333333395421505,
152
+ "rewards/task_completion_reward": 0.5000000074505806,
153
+ "step": 7
154
+ },
155
+ {
156
+ "Per_token_kl_mean": 0.0323486328125,
157
+ "Unclipped Grad Norm": 7.028786659240723,
158
+ "clip_ratio/high_max": 0.0038157374947331846,
159
+ "clip_ratio/high_mean": 0.0027122838655486703,
160
+ "clip_ratio/low_mean": 0.0004040636194986291,
161
+ "clip_ratio/low_min": 5.172770397621207e-05,
162
+ "clip_ratio/region_mean": 0.003116347477771342,
163
+ "epoch": 0.05333333333333334,
164
+ "learning_rate": 2.3333333333333333e-07,
165
+ "loss": -0.2645,
166
+ "step": 8
167
+ },
168
+ {
169
+ "Per_token_kl_mean": 0.0271148681640625,
170
+ "Unclipped Grad Norm": 6.270898342132568,
171
+ "average_num_turns": 30.166666666666668,
172
+ "clip_ratio/high_max": 0.0,
173
+ "clip_ratio/high_mean": 0.0,
174
+ "clip_ratio/low_mean": 0.0,
175
+ "clip_ratio/low_min": 0.0,
176
+ "clip_ratio/region_mean": 0.0,
177
+ "completion_length": 2023.0000610351562,
178
+ "complexity_score": 6.0,
179
+ "epoch": 0.06,
180
+ "learning_rate": 2.6666666666666667e-07,
181
+ "loss": -0.2929,
182
+ "num_customer_asks": 3.0,
183
+ "reward": 1.2500000149011612,
184
+ "reward_std": 2.177278846502304,
185
+ "rewards/format_error_penalty": -0.13888888992369175,
186
+ "rewards/task_completion_reward": 0.4166666716337204,
187
+ "step": 9
188
+ },
189
+ {
190
+ "Per_token_kl_mean": 0.02618408203125,
191
+ "Unclipped Grad Norm": 6.559571266174316,
192
+ "clip_ratio/high_max": 0.003160445368848741,
193
+ "clip_ratio/high_mean": 0.002441313030431047,
194
+ "clip_ratio/low_mean": 0.000625347585810232,
195
+ "clip_ratio/low_min": 0.00015612477727700025,
196
+ "clip_ratio/region_mean": 0.0030666604870930314,
197
+ "epoch": 0.06666666666666667,
198
+ "learning_rate": 3e-07,
199
+ "loss": -0.2931,
200
+ "step": 10
201
+ },
202
+ {
203
+ "Per_token_kl_mean": 0.0250396728515625,
204
+ "Unclipped Grad Norm": 2.1664702892303467,
205
+ "average_num_turns": 37.833333333333336,
206
+ "clip_ratio/high_max": 0.0,
207
+ "clip_ratio/high_mean": 0.0,
208
+ "clip_ratio/low_mean": 0.0,
209
+ "clip_ratio/low_min": 0.0,
210
+ "clip_ratio/region_mean": 0.0,
211
+ "completion_length": 2626.2500915527344,
212
+ "complexity_score": 6.0,
213
+ "epoch": 0.07333333333333333,
214
+ "learning_rate": 3.333333333333333e-07,
215
+ "loss": 0.0553,
216
+ "num_customer_asks": 3.0,
217
+ "reward": 1.55555559694767,
218
+ "reward_std": 1.440958559513092,
219
+ "rewards/format_error_penalty": 0.0,
220
+ "rewards/task_completion_reward": 0.3888888992369175,
221
+ "step": 11
222
+ },
223
+ {
224
+ "Per_token_kl_mean": 0.025238037109375,
225
+ "Unclipped Grad Norm": 2.2072267532348633,
226
+ "clip_ratio/high_max": 0.0019618187216110528,
227
+ "clip_ratio/high_mean": 0.0012091500830138102,
228
+ "clip_ratio/low_mean": 0.0008225331694120541,
229
+ "clip_ratio/low_min": 0.000321938656270504,
230
+ "clip_ratio/region_mean": 0.002031683281529695,
231
+ "epoch": 0.08,
232
+ "learning_rate": 3.666666666666666e-07,
233
+ "loss": 0.0557,
234
+ "step": 12
235
+ },
236
+ {
237
+ "Per_token_kl_mean": 0.0301513671875,
238
+ "Unclipped Grad Norm": 2.987588882446289,
239
+ "average_num_turns": 29.666666666666668,
240
+ "clip_ratio/high_max": 0.0,
241
+ "clip_ratio/high_mean": 0.0,
242
+ "clip_ratio/low_mean": 0.0,
243
+ "clip_ratio/low_min": 0.0,
244
+ "clip_ratio/region_mean": 0.0,
245
+ "completion_length": 1992.4166870117188,
246
+ "complexity_score": 6.0,
247
+ "epoch": 0.08666666666666667,
248
+ "learning_rate": 4e-07,
249
+ "loss": -0.0646,
250
+ "num_customer_asks": 3.0,
251
+ "reward": 1.4722222164273262,
252
+ "reward_std": 0.9841874539852142,
253
+ "rewards/format_error_penalty": -0.02777777798473835,
254
+ "rewards/task_completion_reward": 0.38888888992369175,
255
+ "step": 13
256
+ },
257
+ {
258
+ "Per_token_kl_mean": 0.0303955078125,
259
+ "Unclipped Grad Norm": 2.9625842571258545,
260
+ "clip_ratio/high_max": 0.0011975533270742744,
261
+ "clip_ratio/high_mean": 0.0007141664100345224,
262
+ "clip_ratio/low_mean": 0.0008382906962651759,
263
+ "clip_ratio/low_min": 0.0006468697683885694,
264
+ "clip_ratio/region_mean": 0.0015524571645073593,
265
+ "epoch": 0.09333333333333334,
266
+ "learning_rate": 4.3333333333333335e-07,
267
+ "loss": -0.0652,
268
+ "step": 14
269
+ },
270
+ {
271
+ "Per_token_kl_mean": 0.034576416015625,
272
+ "Unclipped Grad Norm": 2.2712526321411133,
273
+ "average_num_turns": 28.333333333333332,
274
+ "clip_ratio/high_max": 0.0,
275
+ "clip_ratio/high_mean": 0.0,
276
+ "clip_ratio/low_mean": 0.0,
277
+ "clip_ratio/low_min": 0.0,
278
+ "clip_ratio/region_mean": 0.0,
279
+ "completion_length": 1760.9166870117188,
280
+ "complexity_score": 6.0,
281
+ "epoch": 0.1,
282
+ "learning_rate": 4.6666666666666666e-07,
283
+ "loss": 0.0936,
284
+ "num_customer_asks": 3.0,
285
+ "reward": 2.111111134290695,
286
+ "reward_std": 1.0270463228225708,
287
+ "rewards/format_error_penalty": 0.0,
288
+ "rewards/task_completion_reward": 0.5277777835726738,
289
+ "step": 15
290
+ },
291
+ {
292
+ "epoch": 0.1,
293
+ "eval_Per_token_kl_mean": 0.025357759915865384,
294
+ "eval_average_num_turns": 34.35897435897436,
295
+ "eval_clip_ratio/high_max": 0.0,
296
+ "eval_clip_ratio/high_mean": 0.0,
297
+ "eval_clip_ratio/low_mean": 0.0,
298
+ "eval_clip_ratio/low_min": 0.0,
299
+ "eval_clip_ratio/region_mean": 0.0,
300
+ "eval_completion_length": 2353.794940655048,
301
+ "eval_loss": 0.24709098041057587,
302
+ "eval_reward": 1.52991456251878,
303
+ "eval_reward_std": 2.1771165499320397,
304
+ "eval_rewards/format_error_penalty": -0.05982906027482106,
305
+ "eval_rewards/task_completion_reward": 0.4273504397043815,
306
+ "eval_runtime": 2733.9302,
307
+ "eval_samples_per_second": 0.042,
308
+ "eval_steps_per_second": 0.005,
309
+ "step": 15
310
+ },
311
+ {
312
+ "Per_token_kl_mean": 0.033294677734375,
313
+ "Unclipped Grad Norm": 2.322817087173462,
314
+ "clip_ratio/high_max": 0.0018439284758642316,
315
+ "clip_ratio/high_mean": 0.0013078018673695624,
316
+ "clip_ratio/low_mean": 0.0004917525366181508,
317
+ "clip_ratio/low_min": 0.00031898114684736356,
318
+ "clip_ratio/region_mean": 0.001799554389435798,
319
+ "epoch": 0.10666666666666667,
320
+ "learning_rate": 5e-07,
321
+ "loss": 0.0935,
322
+ "step": 16
323
+ },
324
+ {
325
+ "Per_token_kl_mean": 0.0430755615234375,
326
+ "Unclipped Grad Norm": 2.7783238887786865,
327
+ "average_num_turns": 29.5,
328
+ "clip_ratio/high_max": 0.0,
329
+ "clip_ratio/high_mean": 0.0,
330
+ "clip_ratio/low_mean": 0.0,
331
+ "clip_ratio/low_min": 0.0,
332
+ "clip_ratio/region_mean": 0.0,
333
+ "completion_length": 1972.75,
334
+ "complexity_score": 6.0,
335
+ "epoch": 0.11333333333333333,
336
+ "learning_rate": 5.333333333333333e-07,
337
+ "loss": -0.0118,
338
+ "num_customer_asks": 3.0,
339
+ "reward": 2.3611111491918564,
340
+ "reward_std": 1.602652668952942,
341
+ "rewards/format_error_penalty": -0.02777777798473835,
342
+ "rewards/task_completion_reward": 0.6111111156642437,
343
+ "step": 17
344
+ },
345
+ {
346
+ "Per_token_kl_mean": 0.044036865234375,
347
+ "Unclipped Grad Norm": 2.7810113430023193,
348
+ "clip_ratio/high_max": 0.0028563252999447286,
349
+ "clip_ratio/high_mean": 0.0016192300245165825,
350
+ "clip_ratio/low_mean": 0.0007866146333981305,
351
+ "clip_ratio/low_min": 0.0002636234785313718,
352
+ "clip_ratio/region_mean": 0.0024058446288108826,
353
+ "epoch": 0.12,
354
+ "learning_rate": 5.666666666666666e-07,
355
+ "loss": -0.0121,
356
+ "step": 18
357
+ },
358
+ {
359
+ "Per_token_kl_mean": 0.025054931640625,
360
+ "Unclipped Grad Norm": 3.528660535812378,
361
+ "average_num_turns": 31.333333333333332,
362
+ "clip_ratio/high_max": 0.0,
363
+ "clip_ratio/high_mean": 0.0,
364
+ "clip_ratio/low_mean": 0.0,
365
+ "clip_ratio/low_min": 0.0,
366
+ "clip_ratio/region_mean": 0.0,
367
+ "completion_length": 2019.3333435058594,
368
+ "complexity_score": 6.0,
369
+ "epoch": 0.12666666666666668,
370
+ "learning_rate": 6e-07,
371
+ "loss": -0.0314,
372
+ "num_customer_asks": 3.0,
373
+ "reward": 1.805555559694767,
374
+ "reward_std": 1.4841874539852142,
375
+ "rewards/format_error_penalty": -0.02777777798473835,
376
+ "rewards/task_completion_reward": 0.47222222574055195,
377
+ "step": 19
378
+ },
379
+ {
380
+ "Per_token_kl_mean": 0.0247650146484375,
381
+ "Unclipped Grad Norm": 3.4883873462677,
382
+ "clip_ratio/high_max": 0.0018595074361655861,
383
+ "clip_ratio/high_mean": 0.0010996465716743842,
384
+ "clip_ratio/low_mean": 0.0010979147627949715,
385
+ "clip_ratio/low_min": 0.0005871060129720718,
386
+ "clip_ratio/region_mean": 0.0021975613199174404,
387
+ "epoch": 0.13333333333333333,
388
+ "learning_rate": 6.333333333333332e-07,
389
+ "loss": -0.032,
390
+ "step": 20
391
+ },
392
+ {
393
+ "Per_token_kl_mean": 0.02117919921875,
394
+ "Unclipped Grad Norm": 2.8084309101104736,
395
+ "average_num_turns": 34.5,
396
+ "clip_ratio/high_max": 0.0,
397
+ "clip_ratio/high_mean": 0.0,
398
+ "clip_ratio/low_mean": 0.0,
399
+ "clip_ratio/low_min": 0.0,
400
+ "clip_ratio/region_mean": 0.0,
401
+ "completion_length": 1941.9166870117188,
402
+ "complexity_score": 6.0,
403
+ "epoch": 0.14,
404
+ "learning_rate": 6.666666666666666e-07,
405
+ "loss": -0.0804,
406
+ "num_customer_asks": 4.25,
407
+ "reward": 1.7500000447034836,
408
+ "reward_std": 2.3562310338020325,
409
+ "rewards/format_error_penalty": -0.08333333395421505,
410
+ "rewards/task_completion_reward": 0.5000000111758709,
411
+ "step": 21
412
+ },
413
+ {
414
+ "Per_token_kl_mean": 0.021484375,
415
+ "Unclipped Grad Norm": 2.7404944896698,
416
+ "clip_ratio/high_max": 0.003064427903154865,
417
+ "clip_ratio/high_mean": 0.0022258827375480905,
418
+ "clip_ratio/low_mean": 0.0012874454841949046,
419
+ "clip_ratio/low_min": 0.0005756000900873914,
420
+ "clip_ratio/region_mean": 0.0035133282653987408,
421
+ "epoch": 0.14666666666666667,
422
+ "learning_rate": 7e-07,
423
+ "loss": -0.0818,
424
+ "step": 22
425
+ },
426
+ {
427
+ "Per_token_kl_mean": 0.044525146484375,
428
+ "Unclipped Grad Norm": 3.3428354263305664,
429
+ "average_num_turns": 32.833333333333336,
430
+ "clip_ratio/high_max": 0.0,
431
+ "clip_ratio/high_mean": 0.0,
432
+ "clip_ratio/low_mean": 0.0,
433
+ "clip_ratio/low_min": 0.0,
434
+ "clip_ratio/region_mean": 0.0,
435
+ "completion_length": 2158.0000915527344,
436
+ "complexity_score": 7.0,
437
+ "epoch": 0.15333333333333332,
438
+ "learning_rate": 7.333333333333332e-07,
439
+ "loss": 0.147,
440
+ "num_customer_asks": 1.5,
441
+ "reward": 2.1388889253139496,
442
+ "reward_std": 1.9457058608531952,
443
+ "rewards/format_error_penalty": -0.02777777798473835,
444
+ "rewards/task_completion_reward": 0.5555555671453476,
445
+ "step": 23
446
+ },
447
+ {
448
+ "Per_token_kl_mean": 0.0443267822265625,
449
+ "Unclipped Grad Norm": 3.2817952632904053,
450
+ "clip_ratio/high_max": 0.0036744638928212225,
451
+ "clip_ratio/high_mean": 0.002176330774091184,
452
+ "clip_ratio/low_mean": 0.0013749823083344381,
453
+ "clip_ratio/low_min": 0.00026823754888027906,
454
+ "clip_ratio/region_mean": 0.003551312955096364,
455
+ "epoch": 0.16,
456
+ "learning_rate": 7.666666666666667e-07,
457
+ "loss": 0.1461,
458
+ "step": 24
459
+ },
460
+ {
461
+ "Per_token_kl_mean": 0.040771484375,
462
+ "Unclipped Grad Norm": 1.6524800062179565,
463
+ "average_num_turns": 40.5,
464
+ "clip_ratio/high_max": 0.0,
465
+ "clip_ratio/high_mean": 0.0,
466
+ "clip_ratio/low_mean": 0.0,
467
+ "clip_ratio/low_min": 0.0,
468
+ "clip_ratio/region_mean": 0.0,
469
+ "completion_length": 3175.0001220703125,
470
+ "complexity_score": 7.0,
471
+ "epoch": 0.16666666666666666,
472
+ "learning_rate": 8e-07,
473
+ "loss": -0.0746,
474
+ "num_customer_asks": 2.0,
475
+ "reward": -0.1666666641831398,
476
+ "reward_std": 1.4557189047336578,
477
+ "rewards/format_error_penalty": -0.16666666977107525,
478
+ "rewards/task_completion_reward": 0.0833333358168602,
479
+ "step": 25
480
+ },
481
+ {
482
+ "Per_token_kl_mean": 0.049560546875,
483
+ "Unclipped Grad Norm": 2.355365514755249,
484
+ "clip_ratio/high_max": 0.0034084554645232856,
485
+ "clip_ratio/high_mean": 0.0027010383491870016,
486
+ "clip_ratio/low_mean": 0.0010280147253070027,
487
+ "clip_ratio/low_min": 0.0003075030690524727,
488
+ "clip_ratio/region_mean": 0.003729053132701665,
489
+ "epoch": 0.17333333333333334,
490
+ "learning_rate": 8.333333333333333e-07,
491
+ "loss": -0.0752,
492
+ "step": 26
493
+ },
494
+ {
495
+ "Per_token_kl_mean": 0.0283355712890625,
496
+ "Unclipped Grad Norm": 2.511045455932617,
497
+ "average_num_turns": 28.5,
498
+ "clip_ratio/high_max": 0.0,
499
+ "clip_ratio/high_mean": 0.0,
500
+ "clip_ratio/low_mean": 0.0,
501
+ "clip_ratio/low_min": 0.0,
502
+ "clip_ratio/region_mean": 0.0,
503
+ "completion_length": 1695.2500610351562,
504
+ "complexity_score": 7.0,
505
+ "epoch": 0.18,
506
+ "learning_rate": 8.666666666666667e-07,
507
+ "loss": -0.1449,
508
+ "num_customer_asks": 2.0,
509
+ "reward": 3.583333373069763,
510
+ "reward_std": 0.9679810702800751,
511
+ "rewards/format_error_penalty": -0.02777777798473835,
512
+ "rewards/task_completion_reward": 0.9166666716337204,
513
+ "step": 27
514
+ },
515
+ {
516
+ "Per_token_kl_mean": 0.0290679931640625,
517
+ "Unclipped Grad Norm": 1.98232102394104,
518
+ "clip_ratio/high_max": 0.0042047875467687845,
519
+ "clip_ratio/high_mean": 0.003447328577749431,
520
+ "clip_ratio/low_mean": 0.00021598533930955455,
521
+ "clip_ratio/low_min": 0.0,
522
+ "clip_ratio/region_mean": 0.0036633139243349433,
523
+ "epoch": 0.18666666666666668,
524
+ "learning_rate": 9e-07,
525
+ "loss": -0.1466,
526
+ "step": 28
527
+ },
528
+ {
529
+ "Per_token_kl_mean": 0.0350799560546875,
530
+ "Unclipped Grad Norm": 2.7602415084838867,
531
+ "average_num_turns": 35.16666666666667,
532
+ "clip_ratio/high_max": 0.0,
533
+ "clip_ratio/high_mean": 0.0,
534
+ "clip_ratio/low_mean": 0.0,
535
+ "clip_ratio/low_min": 0.0,
536
+ "clip_ratio/region_mean": 0.0,
537
+ "completion_length": 2401.2500610351562,
538
+ "complexity_score": 7.0,
539
+ "epoch": 0.19333333333333333,
540
+ "learning_rate": 9.333333333333333e-07,
541
+ "loss": -0.1664,
542
+ "num_customer_asks": 2.0,
543
+ "reward": 0.9722222127020359,
544
+ "reward_std": 1.7836538553237915,
545
+ "rewards/format_error_penalty": -0.08333333395421505,
546
+ "rewards/task_completion_reward": 0.3055555634200573,
547
+ "step": 29
548
+ },
549
+ {
550
+ "Per_token_kl_mean": 0.0365753173828125,
551
+ "Unclipped Grad Norm": 2.590303897857666,
552
+ "clip_ratio/high_max": 0.004933911259286106,
553
+ "clip_ratio/high_mean": 0.0028300698613747954,
554
+ "clip_ratio/low_mean": 0.0010839288734132424,
555
+ "clip_ratio/low_min": 0.0008930626790970564,
556
+ "clip_ratio/region_mean": 0.003913998720236123,
557
+ "epoch": 0.2,
558
+ "learning_rate": 9.666666666666666e-07,
559
+ "loss": -0.1688,
560
+ "step": 30
561
+ },
562
+ {
563
+ "epoch": 0.2,
564
+ "eval_Per_token_kl_mean": 0.03177584134615385,
565
+ "eval_average_num_turns": 32.87179487179487,
566
+ "eval_clip_ratio/high_max": 0.0,
567
+ "eval_clip_ratio/high_mean": 0.0,
568
+ "eval_clip_ratio/low_mean": 0.0,
569
+ "eval_clip_ratio/low_min": 0.0,
570
+ "eval_clip_ratio/region_mean": 0.0,
571
+ "eval_completion_length": 2205.0769981971152,
572
+ "eval_loss": 0.2109963297843933,
573
+ "eval_reward": 1.2564102720755796,
574
+ "eval_reward_std": 2.1476430342747617,
575
+ "eval_rewards/format_error_penalty": -0.09401709529069754,
576
+ "eval_rewards/task_completion_reward": 0.3846153926390868,
577
+ "eval_runtime": 2674.1691,
578
+ "eval_samples_per_second": 0.043,
579
+ "eval_steps_per_second": 0.005,
580
+ "step": 30
581
+ },
582
+ {
583
+ "Per_token_kl_mean": 0.01141357421875,
584
+ "Unclipped Grad Norm": 1.8682786226272583,
585
+ "average_num_turns": 36.0,
586
+ "clip_ratio/high_max": 0.0,
587
+ "clip_ratio/high_mean": 0.0,
588
+ "clip_ratio/low_mean": 0.0,
589
+ "clip_ratio/low_min": 0.0,
590
+ "clip_ratio/region_mean": 0.0,
591
+ "completion_length": 2515.5000610351562,
592
+ "complexity_score": 7.0,
593
+ "epoch": 0.20666666666666667,
594
+ "learning_rate": 1e-06,
595
+ "loss": 0.0785,
596
+ "num_customer_asks": 2.0,
597
+ "reward": 1.4722222536802292,
598
+ "reward_std": 1.3588728606700897,
599
+ "rewards/format_error_penalty": -0.02777777798473835,
600
+ "rewards/task_completion_reward": 0.3888888917863369,
601
+ "step": 31
602
+ },
603
+ {
604
+ "Per_token_kl_mean": 0.0116729736328125,
605
+ "Unclipped Grad Norm": 1.7776020765304565,
606
+ "clip_ratio/high_max": 0.003931889601517469,
607
+ "clip_ratio/high_mean": 0.002635647193528712,
608
+ "clip_ratio/low_mean": 0.001012774337141309,
609
+ "clip_ratio/low_min": 0.0003813192088273354,
610
+ "clip_ratio/region_mean": 0.0036484214942902327,
611
+ "epoch": 0.21333333333333335,
612
+ "learning_rate": 1e-06,
613
+ "loss": 0.077,
614
+ "step": 32
615
+ },
616
+ {
617
+ "Per_token_kl_mean": 0.0507965087890625,
618
+ "Unclipped Grad Norm": 2.096468687057495,
619
+ "average_num_turns": 27.666666666666668,
620
+ "clip_ratio/high_max": 0.0,
621
+ "clip_ratio/high_mean": 0.0,
622
+ "clip_ratio/low_mean": 0.0,
623
+ "clip_ratio/low_min": 0.0,
624
+ "clip_ratio/region_mean": 0.0,
625
+ "completion_length": 1520.7500305175781,
626
+ "complexity_score": 7.0,
627
+ "epoch": 0.22,
628
+ "learning_rate": 1e-06,
629
+ "loss": -0.0384,
630
+ "num_customer_asks": 2.0,
631
+ "reward": 2.6666666865348816,
632
+ "reward_std": 0.7742919027805328,
633
+ "rewards/format_error_penalty": 0.0,
634
+ "rewards/task_completion_reward": 0.6666666716337204,
635
+ "step": 33
636
+ },
637
+ {
638
+ "Per_token_kl_mean": 0.0504150390625,
639
+ "Unclipped Grad Norm": 1.9674818515777588,
640
+ "clip_ratio/high_max": 0.003622451680712402,
641
+ "clip_ratio/high_mean": 0.003039544215425849,
642
+ "clip_ratio/low_mean": 0.0006066844071028754,
643
+ "clip_ratio/low_min": 0.0,
644
+ "clip_ratio/region_mean": 0.0036462285788729787,
645
+ "epoch": 0.22666666666666666,
646
+ "learning_rate": 1e-06,
647
+ "loss": -0.0396,
648
+ "step": 34
649
+ },
650
+ {
651
+ "Per_token_kl_mean": 0.0401458740234375,
652
+ "Unclipped Grad Norm": 2.4924075603485107,
653
+ "average_num_turns": 30.0,
654
+ "clip_ratio/high_max": 0.0,
655
+ "clip_ratio/high_mean": 0.0,
656
+ "clip_ratio/low_mean": 0.0,
657
+ "clip_ratio/low_min": 0.0,
658
+ "clip_ratio/region_mean": 0.0,
659
+ "completion_length": 2005.5834045410156,
660
+ "complexity_score": 7.0,
661
+ "epoch": 0.23333333333333334,
662
+ "learning_rate": 1e-06,
663
+ "loss": -0.1498,
664
+ "num_customer_asks": 2.0,
665
+ "reward": 1.583333358168602,
666
+ "reward_std": 1.4166666865348816,
667
+ "rewards/format_error_penalty": -0.02777777798473835,
668
+ "rewards/task_completion_reward": 0.41666667349636555,
669
+ "step": 35
670
+ },
671
+ {
672
+ "Per_token_kl_mean": 0.041046142578125,
673
+ "Unclipped Grad Norm": 2.228349447250366,
674
+ "clip_ratio/high_max": 0.005987928016111255,
675
+ "clip_ratio/high_mean": 0.004077079560374841,
676
+ "clip_ratio/low_mean": 0.0009926966158673167,
677
+ "clip_ratio/low_min": 0.0003007820341736078,
678
+ "clip_ratio/region_mean": 0.005069775914307684,
679
+ "epoch": 0.24,
680
+ "learning_rate": 1e-06,
681
+ "loss": -0.1525,
682
+ "step": 36
683
+ },
684
+ {
685
+ "Per_token_kl_mean": 0.0146331787109375,
686
+ "Unclipped Grad Norm": 2.172025203704834,
687
+ "average_num_turns": 29.0,
688
+ "clip_ratio/high_max": 0.0,
689
+ "clip_ratio/high_mean": 0.0,
690
+ "clip_ratio/low_mean": 0.0,
691
+ "clip_ratio/low_min": 0.0,
692
+ "clip_ratio/region_mean": 0.0,
693
+ "completion_length": 1905.5833740234375,
694
+ "complexity_score": 7.0,
695
+ "epoch": 0.24666666666666667,
696
+ "learning_rate": 1e-06,
697
+ "loss": 0.0857,
698
+ "num_customer_asks": 2.5,
699
+ "reward": 1.6666666865348816,
700
+ "reward_std": 1.143900990486145,
701
+ "rewards/format_error_penalty": -0.11111111380159855,
702
+ "rewards/task_completion_reward": 0.5000000018626451,
703
+ "step": 37
704
+ },
705
+ {
706
+ "Per_token_kl_mean": 0.0159149169921875,
707
+ "Unclipped Grad Norm": 1.9654333591461182,
708
+ "clip_ratio/high_max": 0.004182191623840481,
709
+ "clip_ratio/high_mean": 0.002845426555722952,
710
+ "clip_ratio/low_mean": 0.000675506453262642,
711
+ "clip_ratio/low_min": 0.00022825838823337108,
712
+ "clip_ratio/region_mean": 0.0035209329798817635,
713
+ "epoch": 0.25333333333333335,
714
+ "learning_rate": 1e-06,
715
+ "loss": 0.0833,
716
+ "step": 38
717
+ },
718
+ {
719
+ "Per_token_kl_mean": 0.032379150390625,
720
+ "Unclipped Grad Norm": 1.6024987697601318,
721
+ "average_num_turns": 32.5,
722
+ "clip_ratio/high_max": 0.0,
723
+ "clip_ratio/high_mean": 0.0,
724
+ "clip_ratio/low_mean": 0.0,
725
+ "clip_ratio/low_min": 0.0,
726
+ "clip_ratio/region_mean": 0.0,
727
+ "completion_length": 2024.2500610351562,
728
+ "complexity_score": 7.0,
729
+ "epoch": 0.26,
730
+ "learning_rate": 1e-06,
731
+ "loss": -0.0089,
732
+ "num_customer_asks": 3.0,
733
+ "reward": 1.7500000465661287,
734
+ "reward_std": 1.081826627254486,
735
+ "rewards/format_error_penalty": -0.08333333395421505,
736
+ "rewards/task_completion_reward": 0.5000000018626451,
737
+ "step": 39
738
+ },
739
+ {
740
+ "Per_token_kl_mean": 0.03466796875,
741
+ "Unclipped Grad Norm": 1.5069187879562378,
742
+ "clip_ratio/high_max": 0.004447502666153014,
743
+ "clip_ratio/high_mean": 0.0026117509696632624,
744
+ "clip_ratio/low_mean": 0.0008172642919817008,
745
+ "clip_ratio/low_min": 0.0003601152275223285,
746
+ "clip_ratio/region_mean": 0.003429015283472836,
747
+ "epoch": 0.26666666666666666,
748
+ "learning_rate": 1e-06,
749
+ "loss": -0.0102,
750
+ "step": 40
751
+ },
752
+ {
753
+ "Per_token_kl_mean": 0.025054931640625,
754
+ "Unclipped Grad Norm": 2.84529185295105,
755
+ "average_num_turns": 28.5,
756
+ "clip_ratio/high_max": 0.0,
757
+ "clip_ratio/high_mean": 0.0,
758
+ "clip_ratio/low_mean": 0.0,
759
+ "clip_ratio/low_min": 0.0,
760
+ "clip_ratio/region_mean": 0.0,
761
+ "completion_length": 1698.6667175292969,
762
+ "complexity_score": 7.0,
763
+ "epoch": 0.2733333333333333,
764
+ "learning_rate": 1e-06,
765
+ "loss": -0.0268,
766
+ "num_customer_asks": 3.0,
767
+ "reward": 3.138888955116272,
768
+ "reward_std": 1.5513382852077484,
769
+ "rewards/format_error_penalty": -0.02777777798473835,
770
+ "rewards/task_completion_reward": 0.8055555671453476,
771
+ "step": 41
772
+ },
773
+ {
774
+ "Per_token_kl_mean": 0.027740478515625,
775
+ "Unclipped Grad Norm": 2.721637487411499,
776
+ "clip_ratio/high_max": 0.005568365100771189,
777
+ "clip_ratio/high_mean": 0.0038201200077310205,
778
+ "clip_ratio/low_mean": 0.0012431106879375875,
779
+ "clip_ratio/low_min": 0.0,
780
+ "clip_ratio/region_mean": 0.005063230404630303,
781
+ "epoch": 0.28,
782
+ "learning_rate": 1e-06,
783
+ "loss": -0.0303,
784
+ "step": 42
785
+ },
786
+ {
787
+ "Per_token_kl_mean": 0.0250244140625,
788
+ "Unclipped Grad Norm": 2.3850605487823486,
789
+ "average_num_turns": 33.0,
790
+ "clip_ratio/high_max": 0.0,
791
+ "clip_ratio/high_mean": 0.0,
792
+ "clip_ratio/low_mean": 0.0,
793
+ "clip_ratio/low_min": 0.0,
794
+ "clip_ratio/region_mean": 0.0,
795
+ "completion_length": 2232.3333740234375,
796
+ "complexity_score": 7.0,
797
+ "epoch": 0.2866666666666667,
798
+ "learning_rate": 1e-06,
799
+ "loss": 0.1268,
800
+ "num_customer_asks": 3.0,
801
+ "reward": 1.8055555745959282,
802
+ "reward_std": 1.4652505218982697,
803
+ "rewards/format_error_penalty": -0.02777777798473835,
804
+ "rewards/task_completion_reward": 0.4722222276031971,
805
+ "step": 43
806
+ },
807
+ {
808
+ "Per_token_kl_mean": 0.088653564453125,
809
+ "Unclipped Grad Norm": 6.797647953033447,
810
+ "clip_ratio/high_max": 0.0052433834644034505,
811
+ "clip_ratio/high_mean": 0.0035476955818012357,
812
+ "clip_ratio/low_mean": 0.0017024853586917743,
813
+ "clip_ratio/low_min": 0.0002615366829559207,
814
+ "clip_ratio/region_mean": 0.0052501807222142816,
815
+ "epoch": 0.29333333333333333,
816
+ "learning_rate": 1e-06,
817
+ "loss": 0.1244,
818
+ "step": 44
819
+ },
820
+ {
821
+ "Per_token_kl_mean": 0.028900146484375,
822
+ "Unclipped Grad Norm": 2.410104751586914,
823
+ "average_num_turns": 28.666666666666664,
824
+ "clip_ratio/high_max": 0.0,
825
+ "clip_ratio/high_mean": 0.0,
826
+ "clip_ratio/low_mean": 0.0,
827
+ "clip_ratio/low_min": 0.0,
828
+ "clip_ratio/region_mean": 0.0,
829
+ "completion_length": 1883.5834045410156,
830
+ "complexity_score": 7.0,
831
+ "epoch": 0.3,
832
+ "learning_rate": 1e-06,
833
+ "loss": -0.081,
834
+ "num_customer_asks": 3.0,
835
+ "reward": 1.1666666641831398,
836
+ "reward_std": 1.4991175830364227,
837
+ "rewards/format_error_penalty": -0.0555555559694767,
838
+ "rewards/task_completion_reward": 0.33333333767950535,
839
+ "step": 45
840
+ },
841
+ {
842
+ "epoch": 0.3,
843
+ "eval_Per_token_kl_mean": 0.04253680889423077,
844
+ "eval_average_num_turns": 32.46153846153846,
845
+ "eval_clip_ratio/high_max": 0.0,
846
+ "eval_clip_ratio/high_mean": 0.0,
847
+ "eval_clip_ratio/low_mean": 0.0,
848
+ "eval_clip_ratio/low_min": 0.0,
849
+ "eval_clip_ratio/region_mean": 0.0,
850
+ "eval_completion_length": 2098.512920673077,
851
+ "eval_loss": 0.19239191710948944,
852
+ "eval_reward": 1.6666667071672587,
853
+ "eval_reward_std": 1.7795228224534254,
854
+ "eval_rewards/format_error_penalty": -0.02564102583206617,
855
+ "eval_rewards/task_completion_reward": 0.4358974460225839,
856
+ "eval_runtime": 2230.4343,
857
+ "eval_samples_per_second": 0.052,
858
+ "eval_steps_per_second": 0.006,
859
+ "step": 45
860
+ },
861
+ {
862
+ "Per_token_kl_mean": 0.031219482421875,
863
+ "Unclipped Grad Norm": 2.1263623237609863,
864
+ "clip_ratio/high_max": 0.0040246553253382444,
865
+ "clip_ratio/high_mean": 0.002286915056174621,
866
+ "clip_ratio/low_mean": 0.0020354260341264307,
867
+ "clip_ratio/low_min": 0.0011469830642454326,
868
+ "clip_ratio/region_mean": 0.0043223409447818995,
869
+ "epoch": 0.30666666666666664,
870
+ "learning_rate": 1e-06,
871
+ "loss": -0.084,
872
+ "step": 46
873
+ },
874
+ {
875
+ "Per_token_kl_mean": 0.039947509765625,
876
+ "Unclipped Grad Norm": 1.3583661317825317,
877
+ "average_num_turns": 35.83333333333333,
878
+ "clip_ratio/high_max": 0.0,
879
+ "clip_ratio/high_mean": 0.0,
880
+ "clip_ratio/low_mean": 0.0,
881
+ "clip_ratio/low_min": 0.0,
882
+ "clip_ratio/region_mean": 0.0,
883
+ "completion_length": 2312.2501220703125,
884
+ "complexity_score": 7.0,
885
+ "epoch": 0.31333333333333335,
886
+ "learning_rate": 1e-06,
887
+ "loss": -0.0855,
888
+ "num_customer_asks": 3.0,
889
+ "reward": 0.6111111287027597,
890
+ "reward_std": 0.8333333358168602,
891
+ "rewards/format_error_penalty": -0.0555555559694767,
892
+ "rewards/task_completion_reward": 0.19444444961845875,
893
+ "step": 47
894
+ },
895
+ {
896
+ "Per_token_kl_mean": 0.04205322265625,
897
+ "Unclipped Grad Norm": 1.2028133869171143,
898
+ "clip_ratio/high_max": 0.003269302542321384,
899
+ "clip_ratio/high_mean": 0.0027497120172483847,
900
+ "clip_ratio/low_mean": 0.0008293144674098585,
901
+ "clip_ratio/low_min": 0.0005048496241215616,
902
+ "clip_ratio/region_mean": 0.0035790265537798405,
903
+ "epoch": 0.32,
904
+ "learning_rate": 1e-06,
905
+ "loss": -0.0863,
906
+ "step": 48
907
+ },
908
+ {
909
+ "Per_token_kl_mean": 0.0615234375,
910
+ "Unclipped Grad Norm": 2.35026216506958,
911
+ "average_num_turns": 36.83333333333333,
912
+ "clip_ratio/high_max": 0.0,
913
+ "clip_ratio/high_mean": 0.0,
914
+ "clip_ratio/low_mean": 0.0,
915
+ "clip_ratio/low_min": 0.0,
916
+ "clip_ratio/region_mean": 0.0,
917
+ "completion_length": 2585.2500610351562,
918
+ "complexity_score": 7.0,
919
+ "epoch": 0.32666666666666666,
920
+ "learning_rate": 1e-06,
921
+ "loss": 0.055,
922
+ "num_customer_asks": 3.0,
923
+ "reward": 1.027777798473835,
924
+ "reward_std": 1.2770463228225708,
925
+ "rewards/format_error_penalty": -0.02777777798473835,
926
+ "rewards/task_completion_reward": 0.2777777835726738,
927
+ "step": 49
928
+ },
929
+ {
930
+ "Per_token_kl_mean": 0.08062744140625,
931
+ "Unclipped Grad Norm": 2.707611560821533,
932
+ "clip_ratio/high_max": 0.0038470617728307843,
933
+ "clip_ratio/high_mean": 0.002755116031039506,
934
+ "clip_ratio/low_mean": 0.0011798873456427827,
935
+ "clip_ratio/low_min": 0.0003029486979357898,
936
+ "clip_ratio/region_mean": 0.003935003420338035,
937
+ "epoch": 0.3333333333333333,
938
+ "learning_rate": 1e-06,
939
+ "loss": 0.053,
940
+ "step": 50
941
+ },
942
+ {
943
+ "Per_token_kl_mean": 0.08648681640625,
944
+ "Unclipped Grad Norm": 1.89194917678833,
945
+ "average_num_turns": 37.0,
946
+ "clip_ratio/high_max": 0.0,
947
+ "clip_ratio/high_mean": 0.0,
948
+ "clip_ratio/low_mean": 0.0,
949
+ "clip_ratio/low_min": 0.0,
950
+ "clip_ratio/region_mean": 0.0,
951
+ "completion_length": 2428.2501220703125,
952
+ "complexity_score": 7.0,
953
+ "epoch": 0.34,
954
+ "learning_rate": 1e-06,
955
+ "loss": -0.0375,
956
+ "num_customer_asks": 3.0,
957
+ "reward": 1.6388889104127884,
958
+ "reward_std": 0.9140522480010986,
959
+ "rewards/format_error_penalty": -0.08333333395421505,
960
+ "rewards/task_completion_reward": 0.4722222238779068,
961
+ "step": 51
962
+ },
963
+ {
964
+ "Per_token_kl_mean": 0.0887451171875,
965
+ "Unclipped Grad Norm": 1.7692519426345825,
966
+ "clip_ratio/high_max": 0.003831716370768845,
967
+ "clip_ratio/high_mean": 0.0030283391824923456,
968
+ "clip_ratio/low_mean": 0.0004408868044265546,
969
+ "clip_ratio/low_min": 0.0,
970
+ "clip_ratio/region_mean": 0.003469225892331451,
971
+ "epoch": 0.3466666666666667,
972
+ "learning_rate": 1e-06,
973
+ "loss": -0.0385,
974
+ "step": 52
975
+ },
976
+ {
977
+ "Per_token_kl_mean": 0.07135009765625,
978
+ "Unclipped Grad Norm": 3.6761016845703125,
979
+ "average_num_turns": 35.666666666666664,
980
+ "clip_ratio/high_max": 0.0,
981
+ "clip_ratio/high_mean": 0.0,
982
+ "clip_ratio/low_mean": 0.0,
983
+ "clip_ratio/low_min": 0.0,
984
+ "clip_ratio/region_mean": 0.0,
985
+ "completion_length": 2346.916717529297,
986
+ "complexity_score": 7.0,
987
+ "epoch": 0.35333333333333333,
988
+ "learning_rate": 1e-06,
989
+ "loss": -0.0323,
990
+ "num_customer_asks": 3.25,
991
+ "reward": 1.416666679084301,
992
+ "reward_std": 1.9870441555976868,
993
+ "rewards/format_error_penalty": -0.08333333395421505,
994
+ "rewards/task_completion_reward": 0.4166666753590107,
995
+ "step": 53
996
+ },
997
+ {
998
+ "Per_token_kl_mean": 0.08929443359375,
999
+ "Unclipped Grad Norm": 3.3974955081939697,
1000
+ "clip_ratio/high_max": 0.005840508965775371,
1001
+ "clip_ratio/high_mean": 0.003950563375838101,
1002
+ "clip_ratio/low_mean": 0.0012561175899463706,
1003
+ "clip_ratio/low_min": 0.00024885421589715406,
1004
+ "clip_ratio/region_mean": 0.005206680856645107,
1005
+ "epoch": 0.36,
1006
+ "learning_rate": 1e-06,
1007
+ "loss": -0.036,
1008
+ "step": 54
1009
+ },
1010
+ {
1011
+ "Per_token_kl_mean": 0.0625,
1012
+ "Unclipped Grad Norm": 2.224308729171753,
1013
+ "average_num_turns": 35.5,
1014
+ "clip_ratio/high_max": 0.0,
1015
+ "clip_ratio/high_mean": 0.0,
1016
+ "clip_ratio/low_mean": 0.0,
1017
+ "clip_ratio/low_min": 0.0,
1018
+ "clip_ratio/region_mean": 0.0,
1019
+ "completion_length": 2021.5834350585938,
1020
+ "complexity_score": 7.0,
1021
+ "epoch": 0.36666666666666664,
1022
+ "learning_rate": 1e-06,
1023
+ "loss": -0.0121,
1024
+ "num_customer_asks": 4.0,
1025
+ "reward": 2.833333358168602,
1026
+ "reward_std": 1.6959705650806427,
1027
+ "rewards/format_error_penalty": -0.0555555559694767,
1028
+ "rewards/task_completion_reward": 0.7500000074505806,
1029
+ "step": 55
1030
+ },
1031
+ {
1032
+ "Per_token_kl_mean": 0.06463623046875,
1033
+ "Unclipped Grad Norm": 1.968030571937561,
1034
+ "clip_ratio/high_max": 0.006955544929951429,
1035
+ "clip_ratio/high_mean": 0.004576037579681724,
1036
+ "clip_ratio/low_mean": 0.0009624737140256912,
1037
+ "clip_ratio/low_min": 0.0003805175074376166,
1038
+ "clip_ratio/region_mean": 0.005538511089980602,
1039
+ "epoch": 0.37333333333333335,
1040
+ "learning_rate": 1e-06,
1041
+ "loss": -0.0152,
1042
+ "step": 56
1043
+ },
1044
+ {
1045
+ "Per_token_kl_mean": 0.07952880859375,
1046
+ "Unclipped Grad Norm": 2.43376088142395,
1047
+ "average_num_turns": 36.0,
1048
+ "clip_ratio/high_max": 0.0,
1049
+ "clip_ratio/high_mean": 0.0,
1050
+ "clip_ratio/low_mean": 0.0,
1051
+ "clip_ratio/low_min": 0.0,
1052
+ "clip_ratio/region_mean": 0.0,
1053
+ "completion_length": 2339.0834045410156,
1054
+ "complexity_score": 7.0,
1055
+ "epoch": 0.38,
1056
+ "learning_rate": 1e-06,
1057
+ "loss": -0.0063,
1058
+ "num_customer_asks": 4.0,
1059
+ "reward": 0.8611111491918564,
1060
+ "reward_std": 1.8430048823356628,
1061
+ "rewards/format_error_penalty": -0.0833333358168602,
1062
+ "rewards/task_completion_reward": 0.2777777872979641,
1063
+ "step": 57
1064
+ },
1065
+ {
1066
+ "Per_token_kl_mean": 0.07452392578125,
1067
+ "Unclipped Grad Norm": 2.115501880645752,
1068
+ "clip_ratio/high_max": 0.006117001874372363,
1069
+ "clip_ratio/high_mean": 0.0034212094615213573,
1070
+ "clip_ratio/low_mean": 0.001921181712532416,
1071
+ "clip_ratio/low_min": 0.0009523867629468441,
1072
+ "clip_ratio/region_mean": 0.00534239097032696,
1073
+ "epoch": 0.38666666666666666,
1074
+ "learning_rate": 1e-06,
1075
+ "loss": -0.0096,
1076
+ "step": 58
1077
+ },
1078
+ {
1079
+ "Per_token_kl_mean": 0.1324462890625,
1080
+ "Unclipped Grad Norm": 2.6459884643554688,
1081
+ "average_num_turns": 34.166666666666664,
1082
+ "clip_ratio/high_max": 0.0,
1083
+ "clip_ratio/high_mean": 0.0,
1084
+ "clip_ratio/low_mean": 0.0,
1085
+ "clip_ratio/low_min": 0.0,
1086
+ "clip_ratio/region_mean": 0.0,
1087
+ "completion_length": 1979.1667175292969,
1088
+ "complexity_score": 7.75,
1089
+ "epoch": 0.3933333333333333,
1090
+ "learning_rate": 1e-06,
1091
+ "loss": 0.0642,
1092
+ "num_customer_asks": 1.75,
1093
+ "reward": 2.444444462656975,
1094
+ "reward_std": 1.6346715986728668,
1095
+ "rewards/format_error_penalty": 0.0,
1096
+ "rewards/task_completion_reward": 0.6111111156642437,
1097
+ "step": 59
1098
+ },
1099
+ {
1100
+ "Per_token_kl_mean": 0.0872802734375,
1101
+ "Unclipped Grad Norm": 2.2109076976776123,
1102
+ "clip_ratio/high_max": 0.005360481911338866,
1103
+ "clip_ratio/high_mean": 0.0037416539853438735,
1104
+ "clip_ratio/low_mean": 0.0017667427600827068,
1105
+ "clip_ratio/low_min": 0.0005991098587401211,
1106
+ "clip_ratio/region_mean": 0.005508396774530411,
1107
+ "epoch": 0.4,
1108
+ "learning_rate": 1e-06,
1109
+ "loss": 0.0606,
1110
+ "step": 60
1111
+ },
1112
+ {
1113
+ "epoch": 0.4,
1114
+ "eval_Per_token_kl_mean": 0.01824951171875,
1115
+ "eval_average_num_turns": 34.30769230769231,
1116
+ "eval_clip_ratio/high_max": 0.0,
1117
+ "eval_clip_ratio/high_mean": 0.0,
1118
+ "eval_clip_ratio/low_mean": 0.0,
1119
+ "eval_clip_ratio/low_min": 0.0,
1120
+ "eval_clip_ratio/region_mean": 0.0,
1121
+ "eval_completion_length": 2164.897479717548,
1122
+ "eval_loss": 0.24680586159229279,
1123
+ "eval_reward": 1.4017094236153822,
1124
+ "eval_reward_std": 2.2400029714290914,
1125
+ "eval_rewards/format_error_penalty": -0.06837606888550979,
1126
+ "eval_rewards/task_completion_reward": 0.4017094121529506,
1127
+ "eval_runtime": 2425.5,
1128
+ "eval_samples_per_second": 0.047,
1129
+ "eval_steps_per_second": 0.005,
1130
+ "step": 60
1131
+ },
1132
+ {
1133
+ "Per_token_kl_mean": 0.0643310546875,
1134
+ "Unclipped Grad Norm": 1.5676761865615845,
1135
+ "average_num_turns": 32.833333333333336,
1136
+ "clip_ratio/high_max": 0.0,
1137
+ "clip_ratio/high_mean": 0.0,
1138
+ "clip_ratio/low_mean": 0.0,
1139
+ "clip_ratio/low_min": 0.0,
1140
+ "clip_ratio/region_mean": 0.0,
1141
+ "completion_length": 1933.7500610351562,
1142
+ "complexity_score": 8.0,
1143
+ "epoch": 0.4066666666666667,
1144
+ "learning_rate": 1e-06,
1145
+ "loss": -0.0075,
1146
+ "num_customer_asks": 1.5,
1147
+ "reward": 2.5833333283662796,
1148
+ "reward_std": 0.9268712103366852,
1149
+ "rewards/format_error_penalty": -0.02777777798473835,
1150
+ "rewards/task_completion_reward": 0.6666666679084301,
1151
+ "step": 61
1152
+ },
1153
+ {
1154
+ "Per_token_kl_mean": 0.063873291015625,
1155
+ "Unclipped Grad Norm": 1.457779884338379,
1156
+ "clip_ratio/high_max": 0.0012671419535763562,
1157
+ "clip_ratio/high_mean": 0.0008937974635045975,
1158
+ "clip_ratio/low_mean": 0.0012637204490602016,
1159
+ "clip_ratio/low_min": 0.0009391065395902842,
1160
+ "clip_ratio/region_mean": 0.0021575178834609687,
1161
+ "epoch": 0.41333333333333333,
1162
+ "learning_rate": 1e-06,
1163
+ "loss": -0.009,
1164
+ "step": 62
1165
+ },
1166
+ {
1167
+ "Per_token_kl_mean": 0.0184478759765625,
1168
+ "Unclipped Grad Norm": 2.0028326511383057,
1169
+ "average_num_turns": 37.666666666666664,
1170
+ "clip_ratio/high_max": 0.0,
1171
+ "clip_ratio/high_mean": 0.0,
1172
+ "clip_ratio/low_mean": 0.0,
1173
+ "clip_ratio/low_min": 0.0,
1174
+ "clip_ratio/region_mean": 0.0,
1175
+ "completion_length": 2159.916717529297,
1176
+ "complexity_score": 8.0,
1177
+ "epoch": 0.42,
1178
+ "learning_rate": 1e-06,
1179
+ "loss": 0.0224,
1180
+ "num_customer_asks": 2.0,
1181
+ "reward": 0.805555559694767,
1182
+ "reward_std": 1.3040926456451416,
1183
+ "rewards/format_error_penalty": -0.02777777798473835,
1184
+ "rewards/task_completion_reward": 0.2222222238779068,
1185
+ "step": 63
1186
+ },
1187
+ {
1188
+ "Per_token_kl_mean": 0.0194854736328125,
1189
+ "Unclipped Grad Norm": 1.8710606098175049,
1190
+ "clip_ratio/high_max": 0.00407925492618233,
1191
+ "clip_ratio/high_mean": 0.0025825222255662084,
1192
+ "clip_ratio/low_mean": 0.0014541190466843545,
1193
+ "clip_ratio/low_min": 0.0005381604423746467,
1194
+ "clip_ratio/region_mean": 0.004036641330458224,
1195
+ "epoch": 0.4266666666666667,
1196
+ "learning_rate": 1e-06,
1197
+ "loss": 0.0196,
1198
+ "step": 64
1199
+ },
1200
+ {
1201
+ "Per_token_kl_mean": 0.081573486328125,
1202
+ "Unclipped Grad Norm": 2.2034525871276855,
1203
+ "average_num_turns": 37.833333333333336,
1204
+ "clip_ratio/high_max": 0.0,
1205
+ "clip_ratio/high_mean": 0.0,
1206
+ "clip_ratio/low_mean": 0.0,
1207
+ "clip_ratio/low_min": 0.0,
1208
+ "clip_ratio/region_mean": 0.0,
1209
+ "completion_length": 2969.000030517578,
1210
+ "complexity_score": 8.0,
1211
+ "epoch": 0.43333333333333335,
1212
+ "learning_rate": 1e-06,
1213
+ "loss": 0.0195,
1214
+ "num_customer_asks": 2.0,
1215
+ "reward": 0.4999999776482582,
1216
+ "reward_std": 0.9114378094673157,
1217
+ "rewards/format_error_penalty": -0.0555555559694767,
1218
+ "rewards/task_completion_reward": 0.1666666716337204,
1219
+ "step": 65
1220
+ },
1221
+ {
1222
+ "Per_token_kl_mean": 0.083404541015625,
1223
+ "Unclipped Grad Norm": 1.9130369424819946,
1224
+ "clip_ratio/high_max": 0.0030444926815107465,
1225
+ "clip_ratio/high_mean": 0.0020603954326361418,
1226
+ "clip_ratio/low_mean": 0.0010586934513412416,
1227
+ "clip_ratio/low_min": 0.0005784977111034095,
1228
+ "clip_ratio/region_mean": 0.0031190887093544006,
1229
+ "epoch": 0.44,
1230
+ "learning_rate": 1e-06,
1231
+ "loss": 0.0165,
1232
+ "step": 66
1233
+ },
1234
+ {
1235
+ "Per_token_kl_mean": 0.0191650390625,
1236
+ "Unclipped Grad Norm": 2.2776553630828857,
1237
+ "average_num_turns": 34.166666666666664,
1238
+ "clip_ratio/high_max": 0.0,
1239
+ "clip_ratio/high_mean": 0.0,
1240
+ "clip_ratio/low_mean": 0.0,
1241
+ "clip_ratio/low_min": 0.0,
1242
+ "clip_ratio/region_mean": 0.0,
1243
+ "completion_length": 2417.7500610351562,
1244
+ "complexity_score": 8.0,
1245
+ "epoch": 0.44666666666666666,
1246
+ "learning_rate": 1e-06,
1247
+ "loss": -0.0766,
1248
+ "num_customer_asks": 2.75,
1249
+ "reward": 0.5833333376795053,
1250
+ "reward_std": 1.3013382256031036,
1251
+ "rewards/format_error_penalty": -0.02777777798473835,
1252
+ "rewards/task_completion_reward": 0.1666666679084301,
1253
+ "step": 67
1254
+ },
1255
+ {
1256
+ "Per_token_kl_mean": 0.0244140625,
1257
+ "Unclipped Grad Norm": 2.078873872756958,
1258
+ "clip_ratio/high_max": 0.004014529753476381,
1259
+ "clip_ratio/high_mean": 0.0018268455751240253,
1260
+ "clip_ratio/low_mean": 0.0033395609352737665,
1261
+ "clip_ratio/low_min": 0.0017342398641631007,
1262
+ "clip_ratio/region_mean": 0.005166406626813114,
1263
+ "epoch": 0.4533333333333333,
1264
+ "learning_rate": 1e-06,
1265
+ "loss": -0.08,
1266
+ "step": 68
1267
+ },
1268
+ {
1269
+ "Per_token_kl_mean": 0.025482177734375,
1270
+ "Unclipped Grad Norm": 1.9708870649337769,
1271
+ "average_num_turns": 38.166666666666664,
1272
+ "clip_ratio/high_max": 0.0,
1273
+ "clip_ratio/high_mean": 0.0,
1274
+ "clip_ratio/low_mean": 0.0,
1275
+ "clip_ratio/low_min": 0.0,
1276
+ "clip_ratio/region_mean": 0.0,
1277
+ "completion_length": 2564.333465576172,
1278
+ "complexity_score": 8.0,
1279
+ "epoch": 0.46,
1280
+ "learning_rate": 1e-06,
1281
+ "loss": -0.0782,
1282
+ "num_customer_asks": 3.0,
1283
+ "reward": 0.5277777761220932,
1284
+ "reward_std": 1.470137745141983,
1285
+ "rewards/format_error_penalty": -0.08333333395421505,
1286
+ "rewards/task_completion_reward": 0.1944444477558136,
1287
+ "step": 69
1288
+ },
1289
+ {
1290
+ "Per_token_kl_mean": 0.028045654296875,
1291
+ "Unclipped Grad Norm": 1.821679711341858,
1292
+ "clip_ratio/high_max": 0.0037925440701656044,
1293
+ "clip_ratio/high_mean": 0.002444355108309537,
1294
+ "clip_ratio/low_mean": 0.001842683384893462,
1295
+ "clip_ratio/low_min": 0.0008508413011441007,
1296
+ "clip_ratio/region_mean": 0.004287038464099169,
1297
+ "epoch": 0.4666666666666667,
1298
+ "learning_rate": 1e-06,
1299
+ "loss": -0.0817,
1300
+ "step": 70
1301
+ },
1302
+ {
1303
+ "Per_token_kl_mean": 0.037200927734375,
1304
+ "Unclipped Grad Norm": 3.7169013023376465,
1305
+ "average_num_turns": 29.666666666666664,
1306
+ "clip_ratio/high_max": 0.0,
1307
+ "clip_ratio/high_mean": 0.0,
1308
+ "clip_ratio/low_mean": 0.0,
1309
+ "clip_ratio/low_min": 0.0,
1310
+ "clip_ratio/region_mean": 0.0,
1311
+ "completion_length": 1839.8333740234375,
1312
+ "complexity_score": 8.0,
1313
+ "epoch": 0.47333333333333333,
1314
+ "learning_rate": 1e-06,
1315
+ "loss": -0.1533,
1316
+ "num_customer_asks": 3.0,
1317
+ "reward": 1.3888889122754335,
1318
+ "reward_std": 1.4409586191177368,
1319
+ "rewards/format_error_penalty": -0.0555555559694767,
1320
+ "rewards/task_completion_reward": 0.38888889737427235,
1321
+ "step": 71
1322
+ },
1323
+ {
1324
+ "Per_token_kl_mean": 0.038604736328125,
1325
+ "Unclipped Grad Norm": 3.5108487606048584,
1326
+ "clip_ratio/high_max": 0.004673434421420097,
1327
+ "clip_ratio/high_mean": 0.0030114339606370777,
1328
+ "clip_ratio/low_mean": 0.0015908468194538727,
1329
+ "clip_ratio/low_min": 0.0009505753114353865,
1330
+ "clip_ratio/region_mean": 0.004602280852850527,
1331
+ "epoch": 0.48,
1332
+ "learning_rate": 1e-06,
1333
+ "loss": -0.1565,
1334
+ "step": 72
1335
+ },
1336
+ {
1337
+ "Per_token_kl_mean": 0.042572021484375,
1338
+ "Unclipped Grad Norm": 2.4610419273376465,
1339
+ "average_num_turns": 41.5,
1340
+ "clip_ratio/high_max": 0.0,
1341
+ "clip_ratio/high_mean": 0.0,
1342
+ "clip_ratio/low_mean": 0.0,
1343
+ "clip_ratio/low_min": 0.0,
1344
+ "clip_ratio/region_mean": 0.0,
1345
+ "completion_length": 2755.166778564453,
1346
+ "complexity_score": 8.0,
1347
+ "epoch": 0.4866666666666667,
1348
+ "learning_rate": 1e-06,
1349
+ "loss": -0.1163,
1350
+ "num_customer_asks": 3.0,
1351
+ "reward": 0.5277777928858995,
1352
+ "reward_std": 1.4409585893154144,
1353
+ "rewards/format_error_penalty": -0.08333333395421505,
1354
+ "rewards/task_completion_reward": 0.19444444961845875,
1355
+ "step": 73
1356
+ },
1357
+ {
1358
+ "Per_token_kl_mean": 0.043304443359375,
1359
+ "Unclipped Grad Norm": 2.216001272201538,
1360
+ "clip_ratio/high_max": 0.006888842326588929,
1361
+ "clip_ratio/high_mean": 0.004849603254115209,
1362
+ "clip_ratio/low_mean": 0.0012642452893487643,
1363
+ "clip_ratio/low_min": 0.0004576289502438158,
1364
+ "clip_ratio/region_mean": 0.0061138488235883415,
1365
+ "epoch": 0.49333333333333335,
1366
+ "learning_rate": 1e-06,
1367
+ "loss": -0.1197,
1368
+ "step": 74
1369
+ },
1370
+ {
1371
+ "Per_token_kl_mean": 0.11602783203125,
1372
+ "Unclipped Grad Norm": 3.582536220550537,
1373
+ "average_num_turns": 43.0,
1374
+ "clip_ratio/high_max": 0.0,
1375
+ "clip_ratio/high_mean": 0.0,
1376
+ "clip_ratio/low_mean": 0.0,
1377
+ "clip_ratio/low_min": 0.0,
1378
+ "clip_ratio/region_mean": 0.0,
1379
+ "completion_length": 2681.2500610351562,
1380
+ "complexity_score": 8.0,
1381
+ "epoch": 0.5,
1382
+ "learning_rate": 1e-06,
1383
+ "loss": 0.0475,
1384
+ "num_customer_asks": 3.0,
1385
+ "reward": 0.6666666809469461,
1386
+ "reward_std": 1.5902504920959473,
1387
+ "rewards/format_error_penalty": -0.11111111380159855,
1388
+ "rewards/task_completion_reward": 0.2500000037252903,
1389
+ "step": 75
1390
+ },
1391
+ {
1392
+ "epoch": 0.5,
1393
+ "eval_Per_token_kl_mean": 0.06984299879807693,
1394
+ "eval_average_num_turns": 32.76923076923077,
1395
+ "eval_clip_ratio/high_max": 0.0,
1396
+ "eval_clip_ratio/high_mean": 0.0,
1397
+ "eval_clip_ratio/low_mean": 0.0,
1398
+ "eval_clip_ratio/low_min": 0.0,
1399
+ "eval_clip_ratio/region_mean": 0.0,
1400
+ "eval_completion_length": 2144.718008188101,
1401
+ "eval_loss": 0.1265711635351181,
1402
+ "eval_reward": 1.7094017565250397,
1403
+ "eval_reward_std": 2.0491558405069203,
1404
+ "eval_rewards/format_error_penalty": -0.034188034442754894,
1405
+ "eval_rewards/task_completion_reward": 0.45299146553644765,
1406
+ "eval_runtime": 2322.0067,
1407
+ "eval_samples_per_second": 0.05,
1408
+ "eval_steps_per_second": 0.006,
1409
+ "step": 75
1410
+ },
1411
+ {
1412
+ "Per_token_kl_mean": 0.116912841796875,
1413
+ "Unclipped Grad Norm": 3.497389316558838,
1414
+ "clip_ratio/high_max": 0.005047270969953388,
1415
+ "clip_ratio/high_mean": 0.0033578600850887597,
1416
+ "clip_ratio/low_mean": 0.0015582542400807142,
1417
+ "clip_ratio/low_min": 0.0007833734707674012,
1418
+ "clip_ratio/region_mean": 0.004916114499792457,
1419
+ "epoch": 0.5066666666666667,
1420
+ "learning_rate": 1e-06,
1421
+ "loss": 0.0451,
1422
+ "step": 76
1423
+ },
1424
+ {
1425
+ "Per_token_kl_mean": 0.043426513671875,
1426
+ "Unclipped Grad Norm": 2.5462687015533447,
1427
+ "average_num_turns": 35.0,
1428
+ "clip_ratio/high_max": 0.0,
1429
+ "clip_ratio/high_mean": 0.0,
1430
+ "clip_ratio/low_mean": 0.0,
1431
+ "clip_ratio/low_min": 0.0,
1432
+ "clip_ratio/region_mean": 0.0,
1433
+ "completion_length": 2257.0833740234375,
1434
+ "complexity_score": 8.0,
1435
+ "epoch": 0.5133333333333333,
1436
+ "learning_rate": 1e-06,
1437
+ "loss": 0.0176,
1438
+ "num_customer_asks": 3.0,
1439
+ "reward": 1.4722222462296486,
1440
+ "reward_std": 1.8866644501686096,
1441
+ "rewards/format_error_penalty": -0.02777777798473835,
1442
+ "rewards/task_completion_reward": 0.38888889737427235,
1443
+ "step": 77
1444
+ },
1445
+ {
1446
+ "Per_token_kl_mean": 0.046600341796875,
1447
+ "Unclipped Grad Norm": 2.1783344745635986,
1448
+ "clip_ratio/high_max": 0.004500846145674586,
1449
+ "clip_ratio/high_mean": 0.0022655446809949353,
1450
+ "clip_ratio/low_mean": 0.003629689570516348,
1451
+ "clip_ratio/low_min": 0.0012793659989256412,
1452
+ "clip_ratio/region_mean": 0.005895234295167029,
1453
+ "epoch": 0.52,
1454
+ "learning_rate": 1e-06,
1455
+ "loss": 0.0132,
1456
+ "step": 78
1457
+ },
1458
+ {
1459
+ "Per_token_kl_mean": 0.0655517578125,
1460
+ "Unclipped Grad Norm": 1.7014760971069336,
1461
+ "average_num_turns": 39.166666666666664,
1462
+ "clip_ratio/high_max": 0.0,
1463
+ "clip_ratio/high_mean": 0.0,
1464
+ "clip_ratio/low_mean": 0.0,
1465
+ "clip_ratio/low_min": 0.0,
1466
+ "clip_ratio/region_mean": 0.0,
1467
+ "completion_length": 2544.666717529297,
1468
+ "complexity_score": 8.0,
1469
+ "epoch": 0.5266666666666666,
1470
+ "learning_rate": 1e-06,
1471
+ "loss": -0.0597,
1472
+ "num_customer_asks": 3.0,
1473
+ "reward": 0.1666666641831398,
1474
+ "reward_std": 1.1050108075141907,
1475
+ "rewards/format_error_penalty": -0.0555555559694767,
1476
+ "rewards/task_completion_reward": 0.08333333395421505,
1477
+ "step": 79
1478
+ },
1479
+ {
1480
+ "Per_token_kl_mean": 0.05706787109375,
1481
+ "Unclipped Grad Norm": 1.7074480056762695,
1482
+ "clip_ratio/high_max": 0.003349923819769174,
1483
+ "clip_ratio/high_mean": 0.0018370240868534893,
1484
+ "clip_ratio/low_mean": 0.001971315490663983,
1485
+ "clip_ratio/low_min": 0.0014147880137898028,
1486
+ "clip_ratio/region_mean": 0.0038083393592387438,
1487
+ "epoch": 0.5333333333333333,
1488
+ "learning_rate": 1e-06,
1489
+ "loss": -0.0614,
1490
+ "step": 80
1491
+ },
1492
+ {
1493
+ "Per_token_kl_mean": 0.0863037109375,
1494
+ "Unclipped Grad Norm": 2.5198090076446533,
1495
+ "average_num_turns": 36.0,
1496
+ "clip_ratio/high_max": 0.0,
1497
+ "clip_ratio/high_mean": 0.0,
1498
+ "clip_ratio/low_mean": 0.0,
1499
+ "clip_ratio/low_min": 0.0,
1500
+ "clip_ratio/region_mean": 0.0,
1501
+ "completion_length": 2527.5834045410156,
1502
+ "complexity_score": 8.0,
1503
+ "epoch": 0.54,
1504
+ "learning_rate": 1e-06,
1505
+ "loss": -0.0381,
1506
+ "num_customer_asks": 3.75,
1507
+ "reward": 0.8055555671453476,
1508
+ "reward_std": 1.6103796660900116,
1509
+ "rewards/format_error_penalty": -0.02777777798473835,
1510
+ "rewards/task_completion_reward": 0.22222222574055195,
1511
+ "step": 81
1512
+ },
1513
+ {
1514
+ "Per_token_kl_mean": 0.089111328125,
1515
+ "Unclipped Grad Norm": 4.5249457359313965,
1516
+ "clip_ratio/high_max": 0.004900677595287561,
1517
+ "clip_ratio/high_mean": 0.0032557058293605223,
1518
+ "clip_ratio/low_mean": 0.0038194154913071543,
1519
+ "clip_ratio/low_min": 0.0025489990948699415,
1520
+ "clip_ratio/region_mean": 0.007075121160596609,
1521
+ "epoch": 0.5466666666666666,
1522
+ "learning_rate": 1e-06,
1523
+ "loss": -0.0421,
1524
+ "step": 82
1525
+ },
1526
+ {
1527
+ "Per_token_kl_mean": 0.06439208984375,
1528
+ "Unclipped Grad Norm": 2.3263447284698486,
1529
+ "average_num_turns": 40.0,
1530
+ "clip_ratio/high_max": 0.0,
1531
+ "clip_ratio/high_mean": 0.0,
1532
+ "clip_ratio/low_mean": 0.0,
1533
+ "clip_ratio/low_min": 0.0,
1534
+ "clip_ratio/region_mean": 0.0,
1535
+ "completion_length": 2643.166748046875,
1536
+ "complexity_score": 8.0,
1537
+ "epoch": 0.5533333333333333,
1538
+ "learning_rate": 1e-06,
1539
+ "loss": -0.0735,
1540
+ "num_customer_asks": 4.0,
1541
+ "reward": 0.5000000018626451,
1542
+ "reward_std": 1.5513382256031036,
1543
+ "rewards/format_error_penalty": -0.0555555559694767,
1544
+ "rewards/task_completion_reward": 0.1666666679084301,
1545
+ "step": 83
1546
+ },
1547
+ {
1548
+ "Per_token_kl_mean": 0.06109619140625,
1549
+ "Unclipped Grad Norm": 1.9366487264633179,
1550
+ "clip_ratio/high_max": 0.005435149068944156,
1551
+ "clip_ratio/high_mean": 0.0032434985623694956,
1552
+ "clip_ratio/low_mean": 0.0024295587791129947,
1553
+ "clip_ratio/low_min": 0.0016576671041548252,
1554
+ "clip_ratio/region_mean": 0.005673057283274829,
1555
+ "epoch": 0.56,
1556
+ "learning_rate": 1e-06,
1557
+ "loss": -0.0769,
1558
+ "step": 84
1559
+ },
1560
+ {
1561
+ "Per_token_kl_mean": 0.08013916015625,
1562
+ "Unclipped Grad Norm": 1.7171117067337036,
1563
+ "average_num_turns": 38.833333333333336,
1564
+ "clip_ratio/high_max": 0.0,
1565
+ "clip_ratio/high_mean": 0.0,
1566
+ "clip_ratio/low_mean": 0.0,
1567
+ "clip_ratio/low_min": 0.0,
1568
+ "clip_ratio/region_mean": 0.0,
1569
+ "completion_length": 2399.9168090820312,
1570
+ "complexity_score": 8.0,
1571
+ "epoch": 0.5666666666666667,
1572
+ "learning_rate": 1e-06,
1573
+ "loss": -0.0926,
1574
+ "num_customer_asks": 4.0,
1575
+ "reward": 1.8055555820465088,
1576
+ "reward_std": 0.5833333730697632,
1577
+ "rewards/format_error_penalty": -0.02777777798473835,
1578
+ "rewards/task_completion_reward": 0.4722222238779068,
1579
+ "step": 85
1580
+ },
1581
+ {
1582
+ "Per_token_kl_mean": 0.07293701171875,
1583
+ "Unclipped Grad Norm": 1.0893405675888062,
1584
+ "clip_ratio/high_max": 0.004440258257091045,
1585
+ "clip_ratio/high_mean": 0.004142843186855316,
1586
+ "clip_ratio/low_mean": 6.518055306514725e-05,
1587
+ "clip_ratio/low_min": 0.0,
1588
+ "clip_ratio/region_mean": 0.00420802365988493,
1589
+ "epoch": 0.5733333333333334,
1590
+ "learning_rate": 1e-06,
1591
+ "loss": -0.094,
1592
+ "step": 86
1593
+ },
1594
+ {
1595
+ "Per_token_kl_mean": 0.08697509765625,
1596
+ "Unclipped Grad Norm": 2.7211594581604004,
1597
+ "average_num_turns": 35.666666666666664,
1598
+ "clip_ratio/high_max": 0.0,
1599
+ "clip_ratio/high_mean": 0.0,
1600
+ "clip_ratio/low_mean": 0.0,
1601
+ "clip_ratio/low_min": 0.0,
1602
+ "clip_ratio/region_mean": 0.0,
1603
+ "completion_length": 1960.0834350585938,
1604
+ "complexity_score": 8.0,
1605
+ "epoch": 0.58,
1606
+ "learning_rate": 1e-06,
1607
+ "loss": -0.11,
1608
+ "num_customer_asks": 4.0,
1609
+ "reward": 1.055555559694767,
1610
+ "reward_std": 1.837636023759842,
1611
+ "rewards/format_error_penalty": -0.16666666977107525,
1612
+ "rewards/task_completion_reward": 0.3888888955116272,
1613
+ "step": 87
1614
+ },
1615
+ {
1616
+ "Per_token_kl_mean": 0.08966064453125,
1617
+ "Unclipped Grad Norm": 2.437295436859131,
1618
+ "clip_ratio/high_max": 0.010313277831301093,
1619
+ "clip_ratio/high_mean": 0.0076583754271268845,
1620
+ "clip_ratio/low_mean": 0.0014018206857144833,
1621
+ "clip_ratio/low_min": 0.0,
1622
+ "clip_ratio/region_mean": 0.009060195763595402,
1623
+ "epoch": 0.5866666666666667,
1624
+ "learning_rate": 1e-06,
1625
+ "loss": -0.1159,
1626
+ "step": 88
1627
+ },
1628
+ {
1629
+ "Per_token_kl_mean": 0.07257080078125,
1630
+ "Unclipped Grad Norm": 1.6133537292480469,
1631
+ "average_num_turns": 37.666666666666664,
1632
+ "clip_ratio/high_max": 0.0,
1633
+ "clip_ratio/high_mean": 0.0,
1634
+ "clip_ratio/low_mean": 0.0,
1635
+ "clip_ratio/low_min": 0.0,
1636
+ "clip_ratio/region_mean": 0.0,
1637
+ "completion_length": 2533.8333740234375,
1638
+ "complexity_score": 8.0,
1639
+ "epoch": 0.5933333333333334,
1640
+ "learning_rate": 1e-06,
1641
+ "loss": 0.0223,
1642
+ "num_customer_asks": 4.0,
1643
+ "reward": 2.2500000074505806,
1644
+ "reward_std": 1.1103796660900116,
1645
+ "rewards/format_error_penalty": -0.02777777798473835,
1646
+ "rewards/task_completion_reward": 0.5833333358168602,
1647
+ "step": 89
1648
+ },
1649
+ {
1650
+ "Per_token_kl_mean": 0.07061767578125,
1651
+ "Unclipped Grad Norm": 1.4744434356689453,
1652
+ "clip_ratio/high_max": 0.005269045475870371,
1653
+ "clip_ratio/high_mean": 0.003768719732761383,
1654
+ "clip_ratio/low_mean": 0.0007124328913050704,
1655
+ "clip_ratio/low_min": 0.0001073422099580057,
1656
+ "clip_ratio/region_mean": 0.004481152514927089,
1657
+ "epoch": 0.6,
1658
+ "learning_rate": 1e-06,
1659
+ "loss": 0.0203,
1660
+ "step": 90
1661
+ },
1662
+ {
1663
+ "epoch": 0.6,
1664
+ "eval_Per_token_kl_mean": 0.014883188100961538,
1665
+ "eval_average_num_turns": 31.076923076923077,
1666
+ "eval_clip_ratio/high_max": 0.0,
1667
+ "eval_clip_ratio/high_mean": 0.0,
1668
+ "eval_clip_ratio/low_mean": 0.0,
1669
+ "eval_clip_ratio/low_min": 0.0,
1670
+ "eval_clip_ratio/region_mean": 0.0,
1671
+ "eval_completion_length": 1997.6410663311299,
1672
+ "eval_loss": 0.19968853890895844,
1673
+ "eval_reward": 1.6752137014499078,
1674
+ "eval_reward_std": 1.9828610787024865,
1675
+ "eval_rewards/format_error_penalty": -0.034188034442754894,
1676
+ "eval_rewards/task_completion_reward": 0.4444444529139079,
1677
+ "eval_runtime": 2287.8452,
1678
+ "eval_samples_per_second": 0.05,
1679
+ "eval_steps_per_second": 0.006,
1680
+ "step": 90
1681
+ },
1682
+ {
1683
+ "Per_token_kl_mean": 0.0200653076171875,
1684
+ "Unclipped Grad Norm": 1.8663575649261475,
1685
+ "average_num_turns": 38.333333333333336,
1686
+ "clip_ratio/high_max": 0.0,
1687
+ "clip_ratio/high_mean": 0.0,
1688
+ "clip_ratio/low_mean": 0.0,
1689
+ "clip_ratio/low_min": 0.0,
1690
+ "clip_ratio/region_mean": 0.0,
1691
+ "completion_length": 2596.0000610351562,
1692
+ "complexity_score": 8.0,
1693
+ "epoch": 0.6066666666666667,
1694
+ "learning_rate": 1e-06,
1695
+ "loss": 0.0079,
1696
+ "num_customer_asks": 4.0,
1697
+ "reward": 2.9166666865348816,
1698
+ "reward_std": 1.2131198644638062,
1699
+ "rewards/format_error_penalty": -0.02777777798473835,
1700
+ "rewards/task_completion_reward": 0.7500000037252903,
1701
+ "step": 91
1702
+ },
1703
+ {
1704
+ "Per_token_kl_mean": 0.0223846435546875,
1705
+ "Unclipped Grad Norm": 1.5770516395568848,
1706
+ "clip_ratio/high_max": 0.003807312168646604,
1707
+ "clip_ratio/high_mean": 0.0028527997492346913,
1708
+ "clip_ratio/low_mean": 0.0014293328567873687,
1709
+ "clip_ratio/low_min": 0.0005622837343253195,
1710
+ "clip_ratio/region_mean": 0.004282132722437382,
1711
+ "epoch": 0.6133333333333333,
1712
+ "learning_rate": 1e-06,
1713
+ "loss": 0.0053,
1714
+ "step": 92
1715
+ },
1716
+ {
1717
+ "Per_token_kl_mean": 0.0768280029296875,
1718
+ "Unclipped Grad Norm": 1.3444591760635376,
1719
+ "average_num_turns": 34.666666666666664,
1720
+ "clip_ratio/high_max": 0.0,
1721
+ "clip_ratio/high_mean": 0.0,
1722
+ "clip_ratio/low_mean": 0.0,
1723
+ "clip_ratio/low_min": 0.0,
1724
+ "clip_ratio/region_mean": 0.0,
1725
+ "completion_length": 2555.3333740234375,
1726
+ "complexity_score": 8.5,
1727
+ "epoch": 0.62,
1728
+ "learning_rate": 1e-06,
1729
+ "loss": -0.0202,
1730
+ "num_customer_asks": 3.0,
1731
+ "reward": -0.1666666716337204,
1732
+ "reward_std": 0.33071890473365784,
1733
+ "rewards/format_error_penalty": -0.0555555559694767,
1734
+ "rewards/task_completion_reward": 0.0,
1735
+ "step": 93
1736
+ },
1737
+ {
1738
+ "Per_token_kl_mean": 0.0771636962890625,
1739
+ "Unclipped Grad Norm": 1.3709343671798706,
1740
+ "clip_ratio/high_max": 0.0010879701003432274,
1741
+ "clip_ratio/high_mean": 0.0008135852986015379,
1742
+ "clip_ratio/low_mean": 0.00022934707521926612,
1743
+ "clip_ratio/low_min": 0.0,
1744
+ "clip_ratio/region_mean": 0.0010429323883727193,
1745
+ "epoch": 0.6266666666666667,
1746
+ "learning_rate": 1e-06,
1747
+ "loss": -0.0205,
1748
+ "step": 94
1749
+ },
1750
+ {
1751
+ "Per_token_kl_mean": 0.0680084228515625,
1752
+ "Unclipped Grad Norm": 2.3600056171417236,
1753
+ "average_num_turns": 42.5,
1754
+ "clip_ratio/high_max": 0.0,
1755
+ "clip_ratio/high_mean": 0.0,
1756
+ "clip_ratio/low_mean": 0.0,
1757
+ "clip_ratio/low_min": 0.0,
1758
+ "clip_ratio/region_mean": 0.0,
1759
+ "completion_length": 3388.0834350585938,
1760
+ "complexity_score": 9.0,
1761
+ "epoch": 0.6333333333333333,
1762
+ "learning_rate": 1e-06,
1763
+ "loss": -0.0755,
1764
+ "num_customer_asks": 2.0,
1765
+ "reward": 0.9166667014360428,
1766
+ "reward_std": 1.6103796660900116,
1767
+ "rewards/format_error_penalty": -0.02777777798473835,
1768
+ "rewards/task_completion_reward": 0.25000000931322575,
1769
+ "step": 95
1770
+ },
1771
+ {
1772
+ "Per_token_kl_mean": 0.064605712890625,
1773
+ "Unclipped Grad Norm": 2.0272347927093506,
1774
+ "clip_ratio/high_max": 0.006581486319191754,
1775
+ "clip_ratio/high_mean": 0.003741313674254343,
1776
+ "clip_ratio/low_mean": 0.002004660287639126,
1777
+ "clip_ratio/low_min": 0.0005876121285837144,
1778
+ "clip_ratio/region_mean": 0.005745973787270486,
1779
+ "epoch": 0.64,
1780
+ "learning_rate": 1e-06,
1781
+ "loss": -0.0794,
1782
+ "step": 96
1783
+ },
1784
+ {
1785
+ "Per_token_kl_mean": 0.019805908203125,
1786
+ "Unclipped Grad Norm": 1.9410338401794434,
1787
+ "average_num_turns": 43.5,
1788
+ "clip_ratio/high_max": 0.0,
1789
+ "clip_ratio/high_mean": 0.0,
1790
+ "clip_ratio/low_mean": 0.0,
1791
+ "clip_ratio/low_min": 0.0,
1792
+ "clip_ratio/region_mean": 0.0,
1793
+ "completion_length": 3261.33349609375,
1794
+ "complexity_score": 9.0,
1795
+ "epoch": 0.6466666666666666,
1796
+ "learning_rate": 1e-06,
1797
+ "loss": 0.1383,
1798
+ "num_customer_asks": 2.5,
1799
+ "reward": 0.38888888992369175,
1800
+ "reward_std": 1.5728756785392761,
1801
+ "rewards/format_error_penalty": -0.0555555559694767,
1802
+ "rewards/task_completion_reward": 0.13888888992369175,
1803
+ "step": 97
1804
+ },
1805
+ {
1806
+ "Per_token_kl_mean": 0.02142333984375,
1807
+ "Unclipped Grad Norm": 1.758843183517456,
1808
+ "clip_ratio/high_max": 0.004393648763652891,
1809
+ "clip_ratio/high_mean": 0.0024257415207102895,
1810
+ "clip_ratio/low_mean": 0.0026695560081861913,
1811
+ "clip_ratio/low_min": 0.001660002686548978,
1812
+ "clip_ratio/region_mean": 0.005095297296065837,
1813
+ "epoch": 0.6533333333333333,
1814
+ "learning_rate": 1e-06,
1815
+ "loss": 0.1354,
1816
+ "step": 98
1817
+ },
1818
+ {
1819
+ "Per_token_kl_mean": 0.0716552734375,
1820
+ "Unclipped Grad Norm": 12.917512893676758,
1821
+ "average_num_turns": 36.0,
1822
+ "clip_ratio/high_max": 0.0,
1823
+ "clip_ratio/high_mean": 0.0,
1824
+ "clip_ratio/low_mean": 0.0,
1825
+ "clip_ratio/low_min": 0.0,
1826
+ "clip_ratio/region_mean": 0.0,
1827
+ "completion_length": 2460.166748046875,
1828
+ "complexity_score": 9.0,
1829
+ "epoch": 0.66,
1830
+ "learning_rate": 1e-06,
1831
+ "loss": 0.1017,
1832
+ "num_customer_asks": 3.0,
1833
+ "reward": 1.138888891786337,
1834
+ "reward_std": 2.480383574962616,
1835
+ "rewards/format_error_penalty": -0.13888888992369175,
1836
+ "rewards/task_completion_reward": 0.38888889737427235,
1837
+ "step": 99
1838
+ },
1839
+ {
1840
+ "Per_token_kl_mean": 0.02471923828125,
1841
+ "Unclipped Grad Norm": 2.999737501144409,
1842
+ "clip_ratio/high_max": 0.0038231764920055866,
1843
+ "clip_ratio/high_mean": 0.0026635820395313203,
1844
+ "clip_ratio/low_mean": 0.0019198434602003545,
1845
+ "clip_ratio/low_min": 0.0009991089900722727,
1846
+ "clip_ratio/region_mean": 0.004583425296004862,
1847
+ "epoch": 0.6666666666666666,
1848
+ "learning_rate": 1e-06,
1849
+ "loss": 0.0995,
1850
+ "step": 100
1851
+ },
1852
+ {
1853
+ "Per_token_kl_mean": 0.03045654296875,
1854
+ "Unclipped Grad Norm": 1.9564775228500366,
1855
+ "average_num_turns": 42.666666666666664,
1856
+ "clip_ratio/high_max": 0.0,
1857
+ "clip_ratio/high_mean": 0.0,
1858
+ "clip_ratio/low_mean": 0.0,
1859
+ "clip_ratio/low_min": 0.0,
1860
+ "clip_ratio/region_mean": 0.0,
1861
+ "completion_length": 3087.5001831054688,
1862
+ "complexity_score": 9.0,
1863
+ "epoch": 0.6733333333333333,
1864
+ "learning_rate": 1e-06,
1865
+ "loss": -0.085,
1866
+ "num_customer_asks": 3.0,
1867
+ "reward": -0.027777783572673798,
1868
+ "reward_std": 1.190958559513092,
1869
+ "rewards/format_error_penalty": -0.08333333395421505,
1870
+ "rewards/task_completion_reward": 0.0555555559694767,
1871
+ "step": 101
1872
+ },
1873
+ {
1874
+ "Per_token_kl_mean": 0.031646728515625,
1875
+ "Unclipped Grad Norm": 1.7730311155319214,
1876
+ "clip_ratio/high_max": 0.005270454101264477,
1877
+ "clip_ratio/high_mean": 0.004261315509211272,
1878
+ "clip_ratio/low_mean": 0.0014705945595778758,
1879
+ "clip_ratio/low_min": 0.0008361203945241868,
1880
+ "clip_ratio/region_mean": 0.005731910117901862,
1881
+ "epoch": 0.68,
1882
+ "learning_rate": 1e-06,
1883
+ "loss": -0.0872,
1884
+ "step": 102
1885
+ },
1886
+ {
1887
+ "Per_token_kl_mean": 0.04736328125,
1888
+ "Unclipped Grad Norm": 1.8645439147949219,
1889
+ "average_num_turns": 43.5,
1890
+ "clip_ratio/high_max": 0.0,
1891
+ "clip_ratio/high_mean": 0.0,
1892
+ "clip_ratio/low_mean": 0.0,
1893
+ "clip_ratio/low_min": 0.0,
1894
+ "clip_ratio/region_mean": 0.0,
1895
+ "completion_length": 3629.666748046875,
1896
+ "complexity_score": 9.0,
1897
+ "epoch": 0.6866666666666666,
1898
+ "learning_rate": 1e-06,
1899
+ "loss": 0.083,
1900
+ "num_customer_asks": 3.0,
1901
+ "reward": 0.33333333767950535,
1902
+ "reward_std": 1.670424461364746,
1903
+ "rewards/format_error_penalty": -0.1111111119389534,
1904
+ "rewards/task_completion_reward": 0.16666666977107525,
1905
+ "step": 103
1906
+ },
1907
+ {
1908
+ "Per_token_kl_mean": 0.04974365234375,
1909
+ "Unclipped Grad Norm": 1.7132644653320312,
1910
+ "clip_ratio/high_max": 0.0032740592141635716,
1911
+ "clip_ratio/high_mean": 0.0020473826734814793,
1912
+ "clip_ratio/low_mean": 0.0025954854136216454,
1913
+ "clip_ratio/low_min": 0.0018629172700457275,
1914
+ "clip_ratio/region_mean": 0.00464286794885993,
1915
+ "epoch": 0.6933333333333334,
1916
+ "learning_rate": 1e-06,
1917
+ "loss": 0.0802,
1918
+ "step": 104
1919
+ },
1920
+ {
1921
+ "Per_token_kl_mean": 0.031097412109375,
1922
+ "Unclipped Grad Norm": 2.467517852783203,
1923
+ "average_num_turns": 36.66666666666667,
1924
+ "clip_ratio/high_max": 0.0,
1925
+ "clip_ratio/high_mean": 0.0,
1926
+ "clip_ratio/low_mean": 0.0,
1927
+ "clip_ratio/low_min": 0.0,
1928
+ "clip_ratio/region_mean": 0.0,
1929
+ "completion_length": 2286.5000610351562,
1930
+ "complexity_score": 9.0,
1931
+ "epoch": 0.7,
1932
+ "learning_rate": 1e-06,
1933
+ "loss": -0.0887,
1934
+ "num_customer_asks": 3.0,
1935
+ "reward": 1.1111111417412758,
1936
+ "reward_std": 1.8159585893154144,
1937
+ "rewards/format_error_penalty": -0.11111111380159855,
1938
+ "rewards/task_completion_reward": 0.36111112125217915,
1939
+ "step": 105
1940
+ },
1941
+ {
1942
+ "epoch": 0.7,
1943
+ "eval_Per_token_kl_mean": 0.045607346754807696,
1944
+ "eval_average_num_turns": 30.82051282051282,
1945
+ "eval_clip_ratio/high_max": 0.0,
1946
+ "eval_clip_ratio/high_mean": 0.0,
1947
+ "eval_clip_ratio/low_mean": 0.0,
1948
+ "eval_clip_ratio/low_min": 0.0,
1949
+ "eval_clip_ratio/region_mean": 0.0,
1950
+ "eval_completion_length": 1949.3077486478364,
1951
+ "eval_loss": 0.169514998793602,
1952
+ "eval_reward": 1.709401751940067,
1953
+ "eval_reward_std": 1.9157432042635405,
1954
+ "eval_rewards/format_error_penalty": -0.03418803501587648,
1955
+ "eval_rewards/task_completion_reward": 0.45299146553644765,
1956
+ "eval_runtime": 2412.5332,
1957
+ "eval_samples_per_second": 0.048,
1958
+ "eval_steps_per_second": 0.005,
1959
+ "step": 105
1960
+ }
1961
+ ],
1962
+ "logging_steps": 1,
1963
+ "max_steps": 150,
1964
+ "num_input_tokens_seen": 0,
1965
+ "num_train_epochs": 1,
1966
+ "save_steps": 15,
1967
+ "stateful_callbacks": {
1968
+ "TrainerControl": {
1969
+ "args": {
1970
+ "should_epoch_stop": false,
1971
+ "should_evaluate": false,
1972
+ "should_log": false,
1973
+ "should_save": true,
1974
+ "should_training_stop": false
1975
+ },
1976
+ "attributes": {}
1977
+ }
1978
+ },
1979
+ "total_flos": 0.0,
1980
+ "train_batch_size": 3,
1981
+ "trial_name": null,
1982
+ "trial_params": null
1983
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1ee9f978e05131a7018cd96caf130eb1694811b97bd3ec95bfb980b9a88f6df
3
+ size 7608
zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)