manu commited on
Commit
cebca1f
·
verified ·
1 Parent(s): 06dcf00

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: vidore/colqwen2.5omni-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "vidore/colqwen2.5omni-base",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": "gaussian",
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 32,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": "(.*(model)(?!.*visual).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
27
+ "task_type": "FEATURE_EXTRACTION",
28
+ "trainable_token_indices": null,
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3160c931d298df8bc7ea3ca33f18b8fdf699fe5c8f23ccf7a5389b12310dd08
3
+ size 239815040
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|AUDIO|>": 151646,
5
+ "<|IMAGE|>": 151655,
6
+ "<|VIDEO|>": 151656,
7
+ "<|audio_bos|>": 151647,
8
+ "<|audio_eos|>": 151648,
9
+ "<|box_end|>": 151649,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|quad_end|>": 151651,
19
+ "<|quad_start|>": 151650,
20
+ "<|repo_name|>": 151663,
21
+ "<|vision_bos|>": 151652,
22
+ "<|vision_eos|>": 151653,
23
+ "<|vision_pad|>": 151654
24
+ }
chat_template.jinja ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {% set audio_count = namespace(value=0) %}{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system
2
+ You are a helpful assistant.<|im_end|>
3
+ {% endif %}<|im_start|>{{ message['role'] }}
4
+ {% if message['content'] is string %}{{ message['content'] }}<|im_end|>
5
+ {% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_bos|><|IMAGE|><|vision_eos|>{% elif content['type'] == 'audio' or 'audio' in content or 'audio_url' in content %}{% set audio_count.value = audio_count.value + 1 %}{% if add_audio_id %}Audio {{ audio_count.value }}: {% endif %}<|audio_bos|><|AUDIO|><|audio_eos|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_bos|><|VIDEO|><|vision_eos|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>
6
+ {% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant
7
+ {% endif %}
checkpoint-2310/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: ./models/base_models/colqwen2.5omni-base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-2310/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "./models/base_models/colqwen2.5omni-base",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": "gaussian",
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.1,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "r": 32,
24
+ "rank_pattern": {},
25
+ "revision": null,
26
+ "target_modules": "(.*(model)(?!.*visual).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
27
+ "task_type": "FEATURE_EXTRACTION",
28
+ "trainable_token_indices": null,
29
+ "use_dora": false,
30
+ "use_rslora": false
31
+ }
checkpoint-2310/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3160c931d298df8bc7ea3ca33f18b8fdf699fe5c8f23ccf7a5389b12310dd08
3
+ size 239815040
checkpoint-2310/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb0841a27b3e5e0653154852aebe78d5eb063396ff95536280b4406694df06d7
3
+ size 479921873
checkpoint-2310/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83046fac2b7438ad2a4687f65dc0b047f36a2b0978aca3f37ad9424882f89aa6
3
+ size 15365
checkpoint-2310/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a1968fdb12179df42f71a51269af81b8919dfaa8db1d8113f94356d44da3413
3
+ size 15365
checkpoint-2310/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4478fdb9cf68d30391c2a54b00325f262bee7827b59f540b311515648be1a848
3
+ size 15365
checkpoint-2310/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a85da7d45d0a4cdcd5689324d284c9d4bf7d9eacb4a1180d4c3df6d204fe2167
3
+ size 15365
checkpoint-2310/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25b0085c1e047b756f13db0ba3741cc59e9579c6b3663e6f0c6a07707a16fae7
3
+ size 1465
checkpoint-2310/trainer_state.json ADDED
@@ -0,0 +1,1835 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 5.0,
6
+ "eval_steps": 100,
7
+ "global_step": 2310,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.021645021645021644,
14
+ "grad_norm": 1.49063241481781,
15
+ "learning_rate": 4.5e-06,
16
+ "loss": 5.15,
17
+ "step": 10
18
+ },
19
+ {
20
+ "epoch": 0.04329004329004329,
21
+ "grad_norm": 2.3369944095611572,
22
+ "learning_rate": 9.5e-06,
23
+ "loss": 5.1055,
24
+ "step": 20
25
+ },
26
+ {
27
+ "epoch": 0.06493506493506493,
28
+ "grad_norm": 2.44476318359375,
29
+ "learning_rate": 1.45e-05,
30
+ "loss": 4.9139,
31
+ "step": 30
32
+ },
33
+ {
34
+ "epoch": 0.08658008658008658,
35
+ "grad_norm": 4.037220001220703,
36
+ "learning_rate": 1.9500000000000003e-05,
37
+ "loss": 4.4762,
38
+ "step": 40
39
+ },
40
+ {
41
+ "epoch": 0.10822510822510822,
42
+ "grad_norm": 5.722354412078857,
43
+ "learning_rate": 2.45e-05,
44
+ "loss": 3.7558,
45
+ "step": 50
46
+ },
47
+ {
48
+ "epoch": 0.12987012987012986,
49
+ "grad_norm": 6.332724571228027,
50
+ "learning_rate": 2.95e-05,
51
+ "loss": 2.7035,
52
+ "step": 60
53
+ },
54
+ {
55
+ "epoch": 0.15151515151515152,
56
+ "grad_norm": 2.5632152557373047,
57
+ "learning_rate": 3.45e-05,
58
+ "loss": 2.0313,
59
+ "step": 70
60
+ },
61
+ {
62
+ "epoch": 0.17316017316017315,
63
+ "grad_norm": 4.372506141662598,
64
+ "learning_rate": 3.9500000000000005e-05,
65
+ "loss": 1.5306,
66
+ "step": 80
67
+ },
68
+ {
69
+ "epoch": 0.19480519480519481,
70
+ "grad_norm": 2.5026726722717285,
71
+ "learning_rate": 4.4500000000000004e-05,
72
+ "loss": 1.2437,
73
+ "step": 90
74
+ },
75
+ {
76
+ "epoch": 0.21645021645021645,
77
+ "grad_norm": 1.9875411987304688,
78
+ "learning_rate": 4.9500000000000004e-05,
79
+ "loss": 0.9561,
80
+ "step": 100
81
+ },
82
+ {
83
+ "epoch": 0.21645021645021645,
84
+ "eval_loss": 0.19921594858169556,
85
+ "eval_runtime": 11.6195,
86
+ "eval_samples_per_second": 43.031,
87
+ "eval_steps_per_second": 0.688,
88
+ "step": 100
89
+ },
90
+ {
91
+ "epoch": 0.23809523809523808,
92
+ "grad_norm": 1.7703560590744019,
93
+ "learning_rate": 4.979638009049774e-05,
94
+ "loss": 0.7735,
95
+ "step": 110
96
+ },
97
+ {
98
+ "epoch": 0.2597402597402597,
99
+ "grad_norm": 1.7760099172592163,
100
+ "learning_rate": 4.957013574660634e-05,
101
+ "loss": 0.6721,
102
+ "step": 120
103
+ },
104
+ {
105
+ "epoch": 0.2813852813852814,
106
+ "grad_norm": 2.115910530090332,
107
+ "learning_rate": 4.934389140271494e-05,
108
+ "loss": 0.6748,
109
+ "step": 130
110
+ },
111
+ {
112
+ "epoch": 0.30303030303030304,
113
+ "grad_norm": 2.5156407356262207,
114
+ "learning_rate": 4.911764705882353e-05,
115
+ "loss": 0.6629,
116
+ "step": 140
117
+ },
118
+ {
119
+ "epoch": 0.3246753246753247,
120
+ "grad_norm": 1.8950108289718628,
121
+ "learning_rate": 4.8891402714932124e-05,
122
+ "loss": 0.6032,
123
+ "step": 150
124
+ },
125
+ {
126
+ "epoch": 0.3463203463203463,
127
+ "grad_norm": 2.0162742137908936,
128
+ "learning_rate": 4.8665158371040724e-05,
129
+ "loss": 0.5883,
130
+ "step": 160
131
+ },
132
+ {
133
+ "epoch": 0.36796536796536794,
134
+ "grad_norm": 1.5109184980392456,
135
+ "learning_rate": 4.843891402714932e-05,
136
+ "loss": 0.6149,
137
+ "step": 170
138
+ },
139
+ {
140
+ "epoch": 0.38961038961038963,
141
+ "grad_norm": 1.7340754270553589,
142
+ "learning_rate": 4.821266968325792e-05,
143
+ "loss": 0.589,
144
+ "step": 180
145
+ },
146
+ {
147
+ "epoch": 0.41125541125541126,
148
+ "grad_norm": 1.6524324417114258,
149
+ "learning_rate": 4.798642533936652e-05,
150
+ "loss": 0.5883,
151
+ "step": 190
152
+ },
153
+ {
154
+ "epoch": 0.4329004329004329,
155
+ "grad_norm": 1.5651330947875977,
156
+ "learning_rate": 4.7760180995475115e-05,
157
+ "loss": 0.5707,
158
+ "step": 200
159
+ },
160
+ {
161
+ "epoch": 0.4329004329004329,
162
+ "eval_loss": 0.13576850295066833,
163
+ "eval_runtime": 10.9595,
164
+ "eval_samples_per_second": 45.623,
165
+ "eval_steps_per_second": 0.73,
166
+ "step": 200
167
+ },
168
+ {
169
+ "epoch": 0.45454545454545453,
170
+ "grad_norm": 1.4788271188735962,
171
+ "learning_rate": 4.753393665158371e-05,
172
+ "loss": 0.5889,
173
+ "step": 210
174
+ },
175
+ {
176
+ "epoch": 0.47619047619047616,
177
+ "grad_norm": 1.4938485622406006,
178
+ "learning_rate": 4.730769230769231e-05,
179
+ "loss": 0.5377,
180
+ "step": 220
181
+ },
182
+ {
183
+ "epoch": 0.49783549783549785,
184
+ "grad_norm": 1.3584009408950806,
185
+ "learning_rate": 4.7081447963800906e-05,
186
+ "loss": 0.5202,
187
+ "step": 230
188
+ },
189
+ {
190
+ "epoch": 0.5194805194805194,
191
+ "grad_norm": 3.0394833087921143,
192
+ "learning_rate": 4.6855203619909505e-05,
193
+ "loss": 0.5044,
194
+ "step": 240
195
+ },
196
+ {
197
+ "epoch": 0.5411255411255411,
198
+ "grad_norm": 1.2974430322647095,
199
+ "learning_rate": 4.6628959276018105e-05,
200
+ "loss": 0.5448,
201
+ "step": 250
202
+ },
203
+ {
204
+ "epoch": 0.5627705627705628,
205
+ "grad_norm": 1.4595730304718018,
206
+ "learning_rate": 4.64027149321267e-05,
207
+ "loss": 0.4816,
208
+ "step": 260
209
+ },
210
+ {
211
+ "epoch": 0.5844155844155844,
212
+ "grad_norm": 1.248807430267334,
213
+ "learning_rate": 4.61764705882353e-05,
214
+ "loss": 0.4622,
215
+ "step": 270
216
+ },
217
+ {
218
+ "epoch": 0.6060606060606061,
219
+ "grad_norm": 1.4656962156295776,
220
+ "learning_rate": 4.595022624434389e-05,
221
+ "loss": 0.4807,
222
+ "step": 280
223
+ },
224
+ {
225
+ "epoch": 0.6277056277056277,
226
+ "grad_norm": 1.5670865774154663,
227
+ "learning_rate": 4.572398190045249e-05,
228
+ "loss": 0.5012,
229
+ "step": 290
230
+ },
231
+ {
232
+ "epoch": 0.6493506493506493,
233
+ "grad_norm": 1.6379127502441406,
234
+ "learning_rate": 4.549773755656109e-05,
235
+ "loss": 0.467,
236
+ "step": 300
237
+ },
238
+ {
239
+ "epoch": 0.6493506493506493,
240
+ "eval_loss": 0.1379440426826477,
241
+ "eval_runtime": 11.0085,
242
+ "eval_samples_per_second": 45.419,
243
+ "eval_steps_per_second": 0.727,
244
+ "step": 300
245
+ },
246
+ {
247
+ "epoch": 0.670995670995671,
248
+ "grad_norm": 1.4250965118408203,
249
+ "learning_rate": 4.527149321266969e-05,
250
+ "loss": 0.4903,
251
+ "step": 310
252
+ },
253
+ {
254
+ "epoch": 0.6926406926406926,
255
+ "grad_norm": 1.3096636533737183,
256
+ "learning_rate": 4.504524886877829e-05,
257
+ "loss": 0.468,
258
+ "step": 320
259
+ },
260
+ {
261
+ "epoch": 0.7142857142857143,
262
+ "grad_norm": 1.3946788311004639,
263
+ "learning_rate": 4.481900452488688e-05,
264
+ "loss": 0.4628,
265
+ "step": 330
266
+ },
267
+ {
268
+ "epoch": 0.7359307359307359,
269
+ "grad_norm": 1.3430134057998657,
270
+ "learning_rate": 4.459276018099548e-05,
271
+ "loss": 0.4711,
272
+ "step": 340
273
+ },
274
+ {
275
+ "epoch": 0.7575757575757576,
276
+ "grad_norm": 1.246222734451294,
277
+ "learning_rate": 4.436651583710407e-05,
278
+ "loss": 0.4829,
279
+ "step": 350
280
+ },
281
+ {
282
+ "epoch": 0.7792207792207793,
283
+ "grad_norm": 1.406936764717102,
284
+ "learning_rate": 4.414027149321267e-05,
285
+ "loss": 0.4452,
286
+ "step": 360
287
+ },
288
+ {
289
+ "epoch": 0.8008658008658008,
290
+ "grad_norm": 1.645504355430603,
291
+ "learning_rate": 4.391402714932127e-05,
292
+ "loss": 0.4385,
293
+ "step": 370
294
+ },
295
+ {
296
+ "epoch": 0.8225108225108225,
297
+ "grad_norm": 1.7644546031951904,
298
+ "learning_rate": 4.368778280542987e-05,
299
+ "loss": 0.4514,
300
+ "step": 380
301
+ },
302
+ {
303
+ "epoch": 0.8441558441558441,
304
+ "grad_norm": 1.7779700756072998,
305
+ "learning_rate": 4.346153846153846e-05,
306
+ "loss": 0.4785,
307
+ "step": 390
308
+ },
309
+ {
310
+ "epoch": 0.8658008658008658,
311
+ "grad_norm": 1.3203119039535522,
312
+ "learning_rate": 4.323529411764706e-05,
313
+ "loss": 0.509,
314
+ "step": 400
315
+ },
316
+ {
317
+ "epoch": 0.8658008658008658,
318
+ "eval_loss": 0.11263184249401093,
319
+ "eval_runtime": 11.019,
320
+ "eval_samples_per_second": 45.376,
321
+ "eval_steps_per_second": 0.726,
322
+ "step": 400
323
+ },
324
+ {
325
+ "epoch": 0.8874458874458875,
326
+ "grad_norm": 1.3130112886428833,
327
+ "learning_rate": 4.300904977375566e-05,
328
+ "loss": 0.4583,
329
+ "step": 410
330
+ },
331
+ {
332
+ "epoch": 0.9090909090909091,
333
+ "grad_norm": 1.0591143369674683,
334
+ "learning_rate": 4.2782805429864254e-05,
335
+ "loss": 0.4318,
336
+ "step": 420
337
+ },
338
+ {
339
+ "epoch": 0.9307359307359307,
340
+ "grad_norm": 1.389012336730957,
341
+ "learning_rate": 4.255656108597285e-05,
342
+ "loss": 0.4554,
343
+ "step": 430
344
+ },
345
+ {
346
+ "epoch": 0.9523809523809523,
347
+ "grad_norm": 1.3405207395553589,
348
+ "learning_rate": 4.233031674208145e-05,
349
+ "loss": 0.4485,
350
+ "step": 440
351
+ },
352
+ {
353
+ "epoch": 0.974025974025974,
354
+ "grad_norm": 1.2793899774551392,
355
+ "learning_rate": 4.2104072398190045e-05,
356
+ "loss": 0.4537,
357
+ "step": 450
358
+ },
359
+ {
360
+ "epoch": 0.9956709956709957,
361
+ "grad_norm": 1.6418206691741943,
362
+ "learning_rate": 4.1877828054298645e-05,
363
+ "loss": 0.4446,
364
+ "step": 460
365
+ },
366
+ {
367
+ "epoch": 1.0173160173160174,
368
+ "grad_norm": 1.7021077871322632,
369
+ "learning_rate": 4.1651583710407244e-05,
370
+ "loss": 0.4476,
371
+ "step": 470
372
+ },
373
+ {
374
+ "epoch": 1.0389610389610389,
375
+ "grad_norm": 2.451876401901245,
376
+ "learning_rate": 4.142533936651584e-05,
377
+ "loss": 0.4221,
378
+ "step": 480
379
+ },
380
+ {
381
+ "epoch": 1.0606060606060606,
382
+ "grad_norm": 1.5263983011245728,
383
+ "learning_rate": 4.1199095022624436e-05,
384
+ "loss": 0.4121,
385
+ "step": 490
386
+ },
387
+ {
388
+ "epoch": 1.0822510822510822,
389
+ "grad_norm": 1.1231575012207031,
390
+ "learning_rate": 4.0972850678733035e-05,
391
+ "loss": 0.4399,
392
+ "step": 500
393
+ },
394
+ {
395
+ "epoch": 1.0822510822510822,
396
+ "eval_loss": 0.107670359313488,
397
+ "eval_runtime": 11.2498,
398
+ "eval_samples_per_second": 44.445,
399
+ "eval_steps_per_second": 0.711,
400
+ "step": 500
401
+ },
402
+ {
403
+ "epoch": 1.103896103896104,
404
+ "grad_norm": 1.3337820768356323,
405
+ "learning_rate": 4.074660633484163e-05,
406
+ "loss": 0.3778,
407
+ "step": 510
408
+ },
409
+ {
410
+ "epoch": 1.1255411255411256,
411
+ "grad_norm": 1.2338522672653198,
412
+ "learning_rate": 4.052036199095023e-05,
413
+ "loss": 0.399,
414
+ "step": 520
415
+ },
416
+ {
417
+ "epoch": 1.1471861471861473,
418
+ "grad_norm": 0.9891630411148071,
419
+ "learning_rate": 4.029411764705883e-05,
420
+ "loss": 0.4085,
421
+ "step": 530
422
+ },
423
+ {
424
+ "epoch": 1.1688311688311688,
425
+ "grad_norm": 2.232311964035034,
426
+ "learning_rate": 4.0067873303167426e-05,
427
+ "loss": 0.4006,
428
+ "step": 540
429
+ },
430
+ {
431
+ "epoch": 1.1904761904761905,
432
+ "grad_norm": 1.403098225593567,
433
+ "learning_rate": 3.984162895927602e-05,
434
+ "loss": 0.425,
435
+ "step": 550
436
+ },
437
+ {
438
+ "epoch": 1.2121212121212122,
439
+ "grad_norm": 1.367215633392334,
440
+ "learning_rate": 3.961538461538462e-05,
441
+ "loss": 0.3828,
442
+ "step": 560
443
+ },
444
+ {
445
+ "epoch": 1.2337662337662338,
446
+ "grad_norm": 1.7988994121551514,
447
+ "learning_rate": 3.938914027149321e-05,
448
+ "loss": 0.3941,
449
+ "step": 570
450
+ },
451
+ {
452
+ "epoch": 1.2554112554112553,
453
+ "grad_norm": 1.0070048570632935,
454
+ "learning_rate": 3.916289592760181e-05,
455
+ "loss": 0.3792,
456
+ "step": 580
457
+ },
458
+ {
459
+ "epoch": 1.277056277056277,
460
+ "grad_norm": 1.2809069156646729,
461
+ "learning_rate": 3.893665158371041e-05,
462
+ "loss": 0.3711,
463
+ "step": 590
464
+ },
465
+ {
466
+ "epoch": 1.2987012987012987,
467
+ "grad_norm": 1.369131326675415,
468
+ "learning_rate": 3.871040723981901e-05,
469
+ "loss": 0.4104,
470
+ "step": 600
471
+ },
472
+ {
473
+ "epoch": 1.2987012987012987,
474
+ "eval_loss": 0.11119061708450317,
475
+ "eval_runtime": 11.018,
476
+ "eval_samples_per_second": 45.38,
477
+ "eval_steps_per_second": 0.726,
478
+ "step": 600
479
+ },
480
+ {
481
+ "epoch": 1.3203463203463204,
482
+ "grad_norm": 1.2250093221664429,
483
+ "learning_rate": 3.848416289592761e-05,
484
+ "loss": 0.3638,
485
+ "step": 610
486
+ },
487
+ {
488
+ "epoch": 1.341991341991342,
489
+ "grad_norm": 1.4213260412216187,
490
+ "learning_rate": 3.82579185520362e-05,
491
+ "loss": 0.408,
492
+ "step": 620
493
+ },
494
+ {
495
+ "epoch": 1.3636363636363638,
496
+ "grad_norm": 1.2376580238342285,
497
+ "learning_rate": 3.8031674208144794e-05,
498
+ "loss": 0.3746,
499
+ "step": 630
500
+ },
501
+ {
502
+ "epoch": 1.3852813852813852,
503
+ "grad_norm": 1.5489083528518677,
504
+ "learning_rate": 3.780542986425339e-05,
505
+ "loss": 0.4002,
506
+ "step": 640
507
+ },
508
+ {
509
+ "epoch": 1.406926406926407,
510
+ "grad_norm": 1.3500491380691528,
511
+ "learning_rate": 3.757918552036199e-05,
512
+ "loss": 0.4152,
513
+ "step": 650
514
+ },
515
+ {
516
+ "epoch": 1.4285714285714286,
517
+ "grad_norm": 1.2030531167984009,
518
+ "learning_rate": 3.735294117647059e-05,
519
+ "loss": 0.3842,
520
+ "step": 660
521
+ },
522
+ {
523
+ "epoch": 1.4502164502164503,
524
+ "grad_norm": 1.205944299697876,
525
+ "learning_rate": 3.712669683257919e-05,
526
+ "loss": 0.3756,
527
+ "step": 670
528
+ },
529
+ {
530
+ "epoch": 1.4718614718614718,
531
+ "grad_norm": 1.2800495624542236,
532
+ "learning_rate": 3.6900452488687784e-05,
533
+ "loss": 0.362,
534
+ "step": 680
535
+ },
536
+ {
537
+ "epoch": 1.4935064935064934,
538
+ "grad_norm": 1.3327527046203613,
539
+ "learning_rate": 3.6674208144796376e-05,
540
+ "loss": 0.3892,
541
+ "step": 690
542
+ },
543
+ {
544
+ "epoch": 1.5151515151515151,
545
+ "grad_norm": 1.760610818862915,
546
+ "learning_rate": 3.6447963800904976e-05,
547
+ "loss": 0.4004,
548
+ "step": 700
549
+ },
550
+ {
551
+ "epoch": 1.5151515151515151,
552
+ "eval_loss": 0.10533424466848373,
553
+ "eval_runtime": 10.9974,
554
+ "eval_samples_per_second": 45.465,
555
+ "eval_steps_per_second": 0.727,
556
+ "step": 700
557
+ },
558
+ {
559
+ "epoch": 1.5367965367965368,
560
+ "grad_norm": 1.2114096879959106,
561
+ "learning_rate": 3.6221719457013575e-05,
562
+ "loss": 0.3773,
563
+ "step": 710
564
+ },
565
+ {
566
+ "epoch": 1.5584415584415585,
567
+ "grad_norm": 1.234147071838379,
568
+ "learning_rate": 3.5995475113122175e-05,
569
+ "loss": 0.3654,
570
+ "step": 720
571
+ },
572
+ {
573
+ "epoch": 1.5800865800865802,
574
+ "grad_norm": 1.1402283906936646,
575
+ "learning_rate": 3.5769230769230774e-05,
576
+ "loss": 0.3956,
577
+ "step": 730
578
+ },
579
+ {
580
+ "epoch": 1.601731601731602,
581
+ "grad_norm": 1.3863605260849,
582
+ "learning_rate": 3.5542986425339367e-05,
583
+ "loss": 0.3847,
584
+ "step": 740
585
+ },
586
+ {
587
+ "epoch": 1.6233766233766234,
588
+ "grad_norm": 1.1907293796539307,
589
+ "learning_rate": 3.5316742081447966e-05,
590
+ "loss": 0.3864,
591
+ "step": 750
592
+ },
593
+ {
594
+ "epoch": 1.645021645021645,
595
+ "grad_norm": 1.4367133378982544,
596
+ "learning_rate": 3.509049773755656e-05,
597
+ "loss": 0.3764,
598
+ "step": 760
599
+ },
600
+ {
601
+ "epoch": 1.6666666666666665,
602
+ "grad_norm": 5.571836948394775,
603
+ "learning_rate": 3.486425339366516e-05,
604
+ "loss": 0.3986,
605
+ "step": 770
606
+ },
607
+ {
608
+ "epoch": 1.6883116883116882,
609
+ "grad_norm": 1.7412991523742676,
610
+ "learning_rate": 3.463800904977376e-05,
611
+ "loss": 0.3659,
612
+ "step": 780
613
+ },
614
+ {
615
+ "epoch": 1.70995670995671,
616
+ "grad_norm": 1.2746937274932861,
617
+ "learning_rate": 3.441176470588236e-05,
618
+ "loss": 0.405,
619
+ "step": 790
620
+ },
621
+ {
622
+ "epoch": 1.7316017316017316,
623
+ "grad_norm": 1.7823095321655273,
624
+ "learning_rate": 3.418552036199095e-05,
625
+ "loss": 0.3756,
626
+ "step": 800
627
+ },
628
+ {
629
+ "epoch": 1.7316017316017316,
630
+ "eval_loss": 0.10027167201042175,
631
+ "eval_runtime": 11.0379,
632
+ "eval_samples_per_second": 45.299,
633
+ "eval_steps_per_second": 0.725,
634
+ "step": 800
635
+ },
636
+ {
637
+ "epoch": 1.7532467532467533,
638
+ "grad_norm": 1.605469822883606,
639
+ "learning_rate": 3.395927601809955e-05,
640
+ "loss": 0.3658,
641
+ "step": 810
642
+ },
643
+ {
644
+ "epoch": 1.774891774891775,
645
+ "grad_norm": 1.058374285697937,
646
+ "learning_rate": 3.373303167420815e-05,
647
+ "loss": 0.3687,
648
+ "step": 820
649
+ },
650
+ {
651
+ "epoch": 1.7965367965367967,
652
+ "grad_norm": 1.0704131126403809,
653
+ "learning_rate": 3.350678733031674e-05,
654
+ "loss": 0.3884,
655
+ "step": 830
656
+ },
657
+ {
658
+ "epoch": 1.8181818181818183,
659
+ "grad_norm": 1.3040030002593994,
660
+ "learning_rate": 3.328054298642534e-05,
661
+ "loss": 0.415,
662
+ "step": 840
663
+ },
664
+ {
665
+ "epoch": 1.8398268398268398,
666
+ "grad_norm": 1.4915244579315186,
667
+ "learning_rate": 3.305429864253394e-05,
668
+ "loss": 0.3376,
669
+ "step": 850
670
+ },
671
+ {
672
+ "epoch": 1.8614718614718615,
673
+ "grad_norm": 1.2545368671417236,
674
+ "learning_rate": 3.282805429864253e-05,
675
+ "loss": 0.3834,
676
+ "step": 860
677
+ },
678
+ {
679
+ "epoch": 1.883116883116883,
680
+ "grad_norm": 1.5177216529846191,
681
+ "learning_rate": 3.260180995475113e-05,
682
+ "loss": 0.3908,
683
+ "step": 870
684
+ },
685
+ {
686
+ "epoch": 1.9047619047619047,
687
+ "grad_norm": 2.2402610778808594,
688
+ "learning_rate": 3.237556561085973e-05,
689
+ "loss": 0.3801,
690
+ "step": 880
691
+ },
692
+ {
693
+ "epoch": 1.9264069264069263,
694
+ "grad_norm": 1.0384106636047363,
695
+ "learning_rate": 3.214932126696833e-05,
696
+ "loss": 0.3801,
697
+ "step": 890
698
+ },
699
+ {
700
+ "epoch": 1.948051948051948,
701
+ "grad_norm": 1.3252601623535156,
702
+ "learning_rate": 3.192307692307692e-05,
703
+ "loss": 0.3787,
704
+ "step": 900
705
+ },
706
+ {
707
+ "epoch": 1.948051948051948,
708
+ "eval_loss": 0.09781702607870102,
709
+ "eval_runtime": 11.1554,
710
+ "eval_samples_per_second": 44.821,
711
+ "eval_steps_per_second": 0.717,
712
+ "step": 900
713
+ },
714
+ {
715
+ "epoch": 1.9696969696969697,
716
+ "grad_norm": 1.3580507040023804,
717
+ "learning_rate": 3.169683257918552e-05,
718
+ "loss": 0.3583,
719
+ "step": 910
720
+ },
721
+ {
722
+ "epoch": 1.9913419913419914,
723
+ "grad_norm": 1.4314372539520264,
724
+ "learning_rate": 3.147058823529412e-05,
725
+ "loss": 0.3653,
726
+ "step": 920
727
+ },
728
+ {
729
+ "epoch": 2.012987012987013,
730
+ "grad_norm": 1.2172566652297974,
731
+ "learning_rate": 3.1244343891402714e-05,
732
+ "loss": 0.3238,
733
+ "step": 930
734
+ },
735
+ {
736
+ "epoch": 2.034632034632035,
737
+ "grad_norm": 1.4818902015686035,
738
+ "learning_rate": 3.1018099547511314e-05,
739
+ "loss": 0.3436,
740
+ "step": 940
741
+ },
742
+ {
743
+ "epoch": 2.0562770562770565,
744
+ "grad_norm": 1.1465860605239868,
745
+ "learning_rate": 3.079185520361991e-05,
746
+ "loss": 0.3425,
747
+ "step": 950
748
+ },
749
+ {
750
+ "epoch": 2.0779220779220777,
751
+ "grad_norm": 1.903261423110962,
752
+ "learning_rate": 3.056561085972851e-05,
753
+ "loss": 0.3647,
754
+ "step": 960
755
+ },
756
+ {
757
+ "epoch": 2.0995670995670994,
758
+ "grad_norm": 1.3892687559127808,
759
+ "learning_rate": 3.03393665158371e-05,
760
+ "loss": 0.3223,
761
+ "step": 970
762
+ },
763
+ {
764
+ "epoch": 2.121212121212121,
765
+ "grad_norm": 1.5258572101593018,
766
+ "learning_rate": 3.01131221719457e-05,
767
+ "loss": 0.3668,
768
+ "step": 980
769
+ },
770
+ {
771
+ "epoch": 2.142857142857143,
772
+ "grad_norm": 1.298425316810608,
773
+ "learning_rate": 2.98868778280543e-05,
774
+ "loss": 0.3487,
775
+ "step": 990
776
+ },
777
+ {
778
+ "epoch": 2.1645021645021645,
779
+ "grad_norm": 1.8322169780731201,
780
+ "learning_rate": 2.9660633484162896e-05,
781
+ "loss": 0.3203,
782
+ "step": 1000
783
+ },
784
+ {
785
+ "epoch": 2.1645021645021645,
786
+ "eval_loss": 0.10291534662246704,
787
+ "eval_runtime": 11.0546,
788
+ "eval_samples_per_second": 45.23,
789
+ "eval_steps_per_second": 0.724,
790
+ "step": 1000
791
+ },
792
+ {
793
+ "epoch": 2.186147186147186,
794
+ "grad_norm": 1.371580958366394,
795
+ "learning_rate": 2.9434389140271496e-05,
796
+ "loss": 0.3089,
797
+ "step": 1010
798
+ },
799
+ {
800
+ "epoch": 2.207792207792208,
801
+ "grad_norm": 1.2570271492004395,
802
+ "learning_rate": 2.9208144796380095e-05,
803
+ "loss": 0.3258,
804
+ "step": 1020
805
+ },
806
+ {
807
+ "epoch": 2.2294372294372296,
808
+ "grad_norm": 1.7881371974945068,
809
+ "learning_rate": 2.898190045248869e-05,
810
+ "loss": 0.3281,
811
+ "step": 1030
812
+ },
813
+ {
814
+ "epoch": 2.2510822510822512,
815
+ "grad_norm": 1.2721039056777954,
816
+ "learning_rate": 2.8755656108597284e-05,
817
+ "loss": 0.3085,
818
+ "step": 1040
819
+ },
820
+ {
821
+ "epoch": 2.2727272727272725,
822
+ "grad_norm": 1.4111952781677246,
823
+ "learning_rate": 2.8529411764705883e-05,
824
+ "loss": 0.3368,
825
+ "step": 1050
826
+ },
827
+ {
828
+ "epoch": 2.2943722943722946,
829
+ "grad_norm": 1.2382339239120483,
830
+ "learning_rate": 2.830316742081448e-05,
831
+ "loss": 0.3331,
832
+ "step": 1060
833
+ },
834
+ {
835
+ "epoch": 2.316017316017316,
836
+ "grad_norm": 1.390204906463623,
837
+ "learning_rate": 2.807692307692308e-05,
838
+ "loss": 0.3604,
839
+ "step": 1070
840
+ },
841
+ {
842
+ "epoch": 2.3376623376623376,
843
+ "grad_norm": 1.046399712562561,
844
+ "learning_rate": 2.7850678733031678e-05,
845
+ "loss": 0.3264,
846
+ "step": 1080
847
+ },
848
+ {
849
+ "epoch": 2.3593073593073592,
850
+ "grad_norm": 1.4382643699645996,
851
+ "learning_rate": 2.7624434389140274e-05,
852
+ "loss": 0.3108,
853
+ "step": 1090
854
+ },
855
+ {
856
+ "epoch": 2.380952380952381,
857
+ "grad_norm": 2.0286881923675537,
858
+ "learning_rate": 2.7398190045248873e-05,
859
+ "loss": 0.3222,
860
+ "step": 1100
861
+ },
862
+ {
863
+ "epoch": 2.380952380952381,
864
+ "eval_loss": 0.09695376455783844,
865
+ "eval_runtime": 11.0788,
866
+ "eval_samples_per_second": 45.131,
867
+ "eval_steps_per_second": 0.722,
868
+ "step": 1100
869
+ },
870
+ {
871
+ "epoch": 2.4025974025974026,
872
+ "grad_norm": 1.735385537147522,
873
+ "learning_rate": 2.7171945701357466e-05,
874
+ "loss": 0.3141,
875
+ "step": 1110
876
+ },
877
+ {
878
+ "epoch": 2.4242424242424243,
879
+ "grad_norm": 1.3764822483062744,
880
+ "learning_rate": 2.6945701357466062e-05,
881
+ "loss": 0.3398,
882
+ "step": 1120
883
+ },
884
+ {
885
+ "epoch": 2.445887445887446,
886
+ "grad_norm": 1.189744234085083,
887
+ "learning_rate": 2.671945701357466e-05,
888
+ "loss": 0.3216,
889
+ "step": 1130
890
+ },
891
+ {
892
+ "epoch": 2.4675324675324677,
893
+ "grad_norm": 1.2942255735397339,
894
+ "learning_rate": 2.649321266968326e-05,
895
+ "loss": 0.3345,
896
+ "step": 1140
897
+ },
898
+ {
899
+ "epoch": 2.4891774891774894,
900
+ "grad_norm": 1.3467974662780762,
901
+ "learning_rate": 2.6266968325791857e-05,
902
+ "loss": 0.3554,
903
+ "step": 1150
904
+ },
905
+ {
906
+ "epoch": 2.5108225108225106,
907
+ "grad_norm": 1.4570668935775757,
908
+ "learning_rate": 2.6040723981900456e-05,
909
+ "loss": 0.328,
910
+ "step": 1160
911
+ },
912
+ {
913
+ "epoch": 2.5324675324675323,
914
+ "grad_norm": 1.5922597646713257,
915
+ "learning_rate": 2.5814479638009052e-05,
916
+ "loss": 0.3139,
917
+ "step": 1170
918
+ },
919
+ {
920
+ "epoch": 2.554112554112554,
921
+ "grad_norm": 1.2003611326217651,
922
+ "learning_rate": 2.5588235294117645e-05,
923
+ "loss": 0.2989,
924
+ "step": 1180
925
+ },
926
+ {
927
+ "epoch": 2.5757575757575757,
928
+ "grad_norm": 2.1363961696624756,
929
+ "learning_rate": 2.5361990950226244e-05,
930
+ "loss": 0.3263,
931
+ "step": 1190
932
+ },
933
+ {
934
+ "epoch": 2.5974025974025974,
935
+ "grad_norm": 1.5996774435043335,
936
+ "learning_rate": 2.5135746606334844e-05,
937
+ "loss": 0.3578,
938
+ "step": 1200
939
+ },
940
+ {
941
+ "epoch": 2.5974025974025974,
942
+ "eval_loss": 0.09967260807752609,
943
+ "eval_runtime": 11.07,
944
+ "eval_samples_per_second": 45.167,
945
+ "eval_steps_per_second": 0.723,
946
+ "step": 1200
947
+ },
948
+ {
949
+ "epoch": 2.619047619047619,
950
+ "grad_norm": 1.1521668434143066,
951
+ "learning_rate": 2.490950226244344e-05,
952
+ "loss": 0.33,
953
+ "step": 1210
954
+ },
955
+ {
956
+ "epoch": 2.6406926406926408,
957
+ "grad_norm": 1.1272907257080078,
958
+ "learning_rate": 2.468325791855204e-05,
959
+ "loss": 0.3119,
960
+ "step": 1220
961
+ },
962
+ {
963
+ "epoch": 2.6623376623376624,
964
+ "grad_norm": 1.270735263824463,
965
+ "learning_rate": 2.4457013574660635e-05,
966
+ "loss": 0.2898,
967
+ "step": 1230
968
+ },
969
+ {
970
+ "epoch": 2.683982683982684,
971
+ "grad_norm": 1.0944297313690186,
972
+ "learning_rate": 2.423076923076923e-05,
973
+ "loss": 0.3235,
974
+ "step": 1240
975
+ },
976
+ {
977
+ "epoch": 2.7056277056277054,
978
+ "grad_norm": 1.8073984384536743,
979
+ "learning_rate": 2.400452488687783e-05,
980
+ "loss": 0.3529,
981
+ "step": 1250
982
+ },
983
+ {
984
+ "epoch": 2.7272727272727275,
985
+ "grad_norm": 1.573345422744751,
986
+ "learning_rate": 2.3778280542986426e-05,
987
+ "loss": 0.3374,
988
+ "step": 1260
989
+ },
990
+ {
991
+ "epoch": 2.7489177489177488,
992
+ "grad_norm": 1.2758445739746094,
993
+ "learning_rate": 2.3552036199095022e-05,
994
+ "loss": 0.3111,
995
+ "step": 1270
996
+ },
997
+ {
998
+ "epoch": 2.7705627705627704,
999
+ "grad_norm": 1.4875160455703735,
1000
+ "learning_rate": 2.3325791855203622e-05,
1001
+ "loss": 0.3152,
1002
+ "step": 1280
1003
+ },
1004
+ {
1005
+ "epoch": 2.792207792207792,
1006
+ "grad_norm": 1.3437527418136597,
1007
+ "learning_rate": 2.309954751131222e-05,
1008
+ "loss": 0.3366,
1009
+ "step": 1290
1010
+ },
1011
+ {
1012
+ "epoch": 2.813852813852814,
1013
+ "grad_norm": 0.9686049818992615,
1014
+ "learning_rate": 2.2873303167420814e-05,
1015
+ "loss": 0.3073,
1016
+ "step": 1300
1017
+ },
1018
+ {
1019
+ "epoch": 2.813852813852814,
1020
+ "eval_loss": 0.11263589560985565,
1021
+ "eval_runtime": 11.0755,
1022
+ "eval_samples_per_second": 45.145,
1023
+ "eval_steps_per_second": 0.722,
1024
+ "step": 1300
1025
+ },
1026
+ {
1027
+ "epoch": 2.8354978354978355,
1028
+ "grad_norm": 1.654786467552185,
1029
+ "learning_rate": 2.2647058823529413e-05,
1030
+ "loss": 0.3259,
1031
+ "step": 1310
1032
+ },
1033
+ {
1034
+ "epoch": 2.857142857142857,
1035
+ "grad_norm": 1.2647713422775269,
1036
+ "learning_rate": 2.2420814479638013e-05,
1037
+ "loss": 0.3261,
1038
+ "step": 1320
1039
+ },
1040
+ {
1041
+ "epoch": 2.878787878787879,
1042
+ "grad_norm": 1.293813943862915,
1043
+ "learning_rate": 2.2194570135746605e-05,
1044
+ "loss": 0.3361,
1045
+ "step": 1330
1046
+ },
1047
+ {
1048
+ "epoch": 2.9004329004329006,
1049
+ "grad_norm": 1.320722222328186,
1050
+ "learning_rate": 2.1968325791855205e-05,
1051
+ "loss": 0.3197,
1052
+ "step": 1340
1053
+ },
1054
+ {
1055
+ "epoch": 2.9220779220779223,
1056
+ "grad_norm": 1.2165260314941406,
1057
+ "learning_rate": 2.1742081447963804e-05,
1058
+ "loss": 0.3408,
1059
+ "step": 1350
1060
+ },
1061
+ {
1062
+ "epoch": 2.9437229437229435,
1063
+ "grad_norm": 1.154363989830017,
1064
+ "learning_rate": 2.15158371040724e-05,
1065
+ "loss": 0.3594,
1066
+ "step": 1360
1067
+ },
1068
+ {
1069
+ "epoch": 2.965367965367965,
1070
+ "grad_norm": 1.7927467823028564,
1071
+ "learning_rate": 2.1289592760180996e-05,
1072
+ "loss": 0.3399,
1073
+ "step": 1370
1074
+ },
1075
+ {
1076
+ "epoch": 2.987012987012987,
1077
+ "grad_norm": 2.399272918701172,
1078
+ "learning_rate": 2.1063348416289595e-05,
1079
+ "loss": 0.3276,
1080
+ "step": 1380
1081
+ },
1082
+ {
1083
+ "epoch": 3.0086580086580086,
1084
+ "grad_norm": 1.5982075929641724,
1085
+ "learning_rate": 2.083710407239819e-05,
1086
+ "loss": 0.2852,
1087
+ "step": 1390
1088
+ },
1089
+ {
1090
+ "epoch": 3.0303030303030303,
1091
+ "grad_norm": 1.479366660118103,
1092
+ "learning_rate": 2.0610859728506787e-05,
1093
+ "loss": 0.2805,
1094
+ "step": 1400
1095
+ },
1096
+ {
1097
+ "epoch": 3.0303030303030303,
1098
+ "eval_loss": 0.09813899546861649,
1099
+ "eval_runtime": 11.2539,
1100
+ "eval_samples_per_second": 44.429,
1101
+ "eval_steps_per_second": 0.711,
1102
+ "step": 1400
1103
+ },
1104
+ {
1105
+ "epoch": 3.051948051948052,
1106
+ "grad_norm": 1.197197437286377,
1107
+ "learning_rate": 2.0384615384615387e-05,
1108
+ "loss": 0.2819,
1109
+ "step": 1410
1110
+ },
1111
+ {
1112
+ "epoch": 3.0735930735930737,
1113
+ "grad_norm": 1.2043474912643433,
1114
+ "learning_rate": 2.0158371040723983e-05,
1115
+ "loss": 0.2739,
1116
+ "step": 1420
1117
+ },
1118
+ {
1119
+ "epoch": 3.0952380952380953,
1120
+ "grad_norm": 1.305875301361084,
1121
+ "learning_rate": 1.9932126696832582e-05,
1122
+ "loss": 0.2823,
1123
+ "step": 1430
1124
+ },
1125
+ {
1126
+ "epoch": 3.116883116883117,
1127
+ "grad_norm": 1.8753947019577026,
1128
+ "learning_rate": 1.9705882352941178e-05,
1129
+ "loss": 0.3127,
1130
+ "step": 1440
1131
+ },
1132
+ {
1133
+ "epoch": 3.1385281385281387,
1134
+ "grad_norm": 1.1929014921188354,
1135
+ "learning_rate": 1.9479638009049774e-05,
1136
+ "loss": 0.2834,
1137
+ "step": 1450
1138
+ },
1139
+ {
1140
+ "epoch": 3.16017316017316,
1141
+ "grad_norm": 1.4350407123565674,
1142
+ "learning_rate": 1.9253393665158374e-05,
1143
+ "loss": 0.2847,
1144
+ "step": 1460
1145
+ },
1146
+ {
1147
+ "epoch": 3.1818181818181817,
1148
+ "grad_norm": 1.4549144506454468,
1149
+ "learning_rate": 1.902714932126697e-05,
1150
+ "loss": 0.2891,
1151
+ "step": 1470
1152
+ },
1153
+ {
1154
+ "epoch": 3.2034632034632033,
1155
+ "grad_norm": 1.4221315383911133,
1156
+ "learning_rate": 1.8800904977375566e-05,
1157
+ "loss": 0.2947,
1158
+ "step": 1480
1159
+ },
1160
+ {
1161
+ "epoch": 3.225108225108225,
1162
+ "grad_norm": 1.5852824449539185,
1163
+ "learning_rate": 1.8574660633484165e-05,
1164
+ "loss": 0.2988,
1165
+ "step": 1490
1166
+ },
1167
+ {
1168
+ "epoch": 3.2467532467532467,
1169
+ "grad_norm": 2.2345638275146484,
1170
+ "learning_rate": 1.834841628959276e-05,
1171
+ "loss": 0.3131,
1172
+ "step": 1500
1173
+ },
1174
+ {
1175
+ "epoch": 3.2467532467532467,
1176
+ "eval_loss": 0.10453030467033386,
1177
+ "eval_runtime": 11.0226,
1178
+ "eval_samples_per_second": 45.361,
1179
+ "eval_steps_per_second": 0.726,
1180
+ "step": 1500
1181
+ },
1182
+ {
1183
+ "epoch": 3.2683982683982684,
1184
+ "grad_norm": 1.0346052646636963,
1185
+ "learning_rate": 1.8122171945701357e-05,
1186
+ "loss": 0.2779,
1187
+ "step": 1510
1188
+ },
1189
+ {
1190
+ "epoch": 3.29004329004329,
1191
+ "grad_norm": 1.4983434677124023,
1192
+ "learning_rate": 1.7895927601809956e-05,
1193
+ "loss": 0.3022,
1194
+ "step": 1520
1195
+ },
1196
+ {
1197
+ "epoch": 3.311688311688312,
1198
+ "grad_norm": 1.3768881559371948,
1199
+ "learning_rate": 1.7669683257918552e-05,
1200
+ "loss": 0.2966,
1201
+ "step": 1530
1202
+ },
1203
+ {
1204
+ "epoch": 3.3333333333333335,
1205
+ "grad_norm": 2.331627130508423,
1206
+ "learning_rate": 1.744343891402715e-05,
1207
+ "loss": 0.2875,
1208
+ "step": 1540
1209
+ },
1210
+ {
1211
+ "epoch": 3.354978354978355,
1212
+ "grad_norm": 1.2236874103546143,
1213
+ "learning_rate": 1.7217194570135748e-05,
1214
+ "loss": 0.277,
1215
+ "step": 1550
1216
+ },
1217
+ {
1218
+ "epoch": 3.3766233766233764,
1219
+ "grad_norm": 1.3123564720153809,
1220
+ "learning_rate": 1.6990950226244347e-05,
1221
+ "loss": 0.2849,
1222
+ "step": 1560
1223
+ },
1224
+ {
1225
+ "epoch": 3.398268398268398,
1226
+ "grad_norm": 1.8533962965011597,
1227
+ "learning_rate": 1.676470588235294e-05,
1228
+ "loss": 0.2907,
1229
+ "step": 1570
1230
+ },
1231
+ {
1232
+ "epoch": 3.41991341991342,
1233
+ "grad_norm": 1.4100937843322754,
1234
+ "learning_rate": 1.653846153846154e-05,
1235
+ "loss": 0.2879,
1236
+ "step": 1580
1237
+ },
1238
+ {
1239
+ "epoch": 3.4415584415584415,
1240
+ "grad_norm": 1.474001169204712,
1241
+ "learning_rate": 1.631221719457014e-05,
1242
+ "loss": 0.2824,
1243
+ "step": 1590
1244
+ },
1245
+ {
1246
+ "epoch": 3.463203463203463,
1247
+ "grad_norm": 1.746888518333435,
1248
+ "learning_rate": 1.6085972850678734e-05,
1249
+ "loss": 0.2926,
1250
+ "step": 1600
1251
+ },
1252
+ {
1253
+ "epoch": 3.463203463203463,
1254
+ "eval_loss": 0.10039258748292923,
1255
+ "eval_runtime": 11.0205,
1256
+ "eval_samples_per_second": 45.37,
1257
+ "eval_steps_per_second": 0.726,
1258
+ "step": 1600
1259
+ },
1260
+ {
1261
+ "epoch": 3.484848484848485,
1262
+ "grad_norm": 1.3926804065704346,
1263
+ "learning_rate": 1.585972850678733e-05,
1264
+ "loss": 0.2806,
1265
+ "step": 1610
1266
+ },
1267
+ {
1268
+ "epoch": 3.5064935064935066,
1269
+ "grad_norm": 1.2975285053253174,
1270
+ "learning_rate": 1.563348416289593e-05,
1271
+ "loss": 0.2834,
1272
+ "step": 1620
1273
+ },
1274
+ {
1275
+ "epoch": 3.5281385281385282,
1276
+ "grad_norm": 1.4987730979919434,
1277
+ "learning_rate": 1.5407239819004526e-05,
1278
+ "loss": 0.2877,
1279
+ "step": 1630
1280
+ },
1281
+ {
1282
+ "epoch": 3.54978354978355,
1283
+ "grad_norm": 1.3945181369781494,
1284
+ "learning_rate": 1.5180995475113122e-05,
1285
+ "loss": 0.2571,
1286
+ "step": 1640
1287
+ },
1288
+ {
1289
+ "epoch": 3.571428571428571,
1290
+ "grad_norm": 1.3280750513076782,
1291
+ "learning_rate": 1.495475113122172e-05,
1292
+ "loss": 0.2687,
1293
+ "step": 1650
1294
+ },
1295
+ {
1296
+ "epoch": 3.5930735930735933,
1297
+ "grad_norm": 1.7335435152053833,
1298
+ "learning_rate": 1.4728506787330317e-05,
1299
+ "loss": 0.3212,
1300
+ "step": 1660
1301
+ },
1302
+ {
1303
+ "epoch": 3.6147186147186146,
1304
+ "grad_norm": 1.2388490438461304,
1305
+ "learning_rate": 1.4502262443438917e-05,
1306
+ "loss": 0.2858,
1307
+ "step": 1670
1308
+ },
1309
+ {
1310
+ "epoch": 3.6363636363636362,
1311
+ "grad_norm": 2.562535524368286,
1312
+ "learning_rate": 1.4276018099547511e-05,
1313
+ "loss": 0.2742,
1314
+ "step": 1680
1315
+ },
1316
+ {
1317
+ "epoch": 3.658008658008658,
1318
+ "grad_norm": 1.321783185005188,
1319
+ "learning_rate": 1.4049773755656109e-05,
1320
+ "loss": 0.304,
1321
+ "step": 1690
1322
+ },
1323
+ {
1324
+ "epoch": 3.6796536796536796,
1325
+ "grad_norm": 1.445235013961792,
1326
+ "learning_rate": 1.3823529411764708e-05,
1327
+ "loss": 0.3193,
1328
+ "step": 1700
1329
+ },
1330
+ {
1331
+ "epoch": 3.6796536796536796,
1332
+ "eval_loss": 0.1012435331940651,
1333
+ "eval_runtime": 11.0758,
1334
+ "eval_samples_per_second": 45.144,
1335
+ "eval_steps_per_second": 0.722,
1336
+ "step": 1700
1337
+ },
1338
+ {
1339
+ "epoch": 3.7012987012987013,
1340
+ "grad_norm": 1.4029107093811035,
1341
+ "learning_rate": 1.3597285067873302e-05,
1342
+ "loss": 0.2957,
1343
+ "step": 1710
1344
+ },
1345
+ {
1346
+ "epoch": 3.722943722943723,
1347
+ "grad_norm": 1.5768345594406128,
1348
+ "learning_rate": 1.33710407239819e-05,
1349
+ "loss": 0.2886,
1350
+ "step": 1720
1351
+ },
1352
+ {
1353
+ "epoch": 3.7445887445887447,
1354
+ "grad_norm": 1.216724157333374,
1355
+ "learning_rate": 1.31447963800905e-05,
1356
+ "loss": 0.2843,
1357
+ "step": 1730
1358
+ },
1359
+ {
1360
+ "epoch": 3.7662337662337664,
1361
+ "grad_norm": 1.4409873485565186,
1362
+ "learning_rate": 1.2918552036199097e-05,
1363
+ "loss": 0.2827,
1364
+ "step": 1740
1365
+ },
1366
+ {
1367
+ "epoch": 3.787878787878788,
1368
+ "grad_norm": 1.0664066076278687,
1369
+ "learning_rate": 1.2692307692307691e-05,
1370
+ "loss": 0.2821,
1371
+ "step": 1750
1372
+ },
1373
+ {
1374
+ "epoch": 3.8095238095238093,
1375
+ "grad_norm": 1.540581464767456,
1376
+ "learning_rate": 1.246606334841629e-05,
1377
+ "loss": 0.2689,
1378
+ "step": 1760
1379
+ },
1380
+ {
1381
+ "epoch": 3.8311688311688314,
1382
+ "grad_norm": 1.1569033861160278,
1383
+ "learning_rate": 1.2239819004524887e-05,
1384
+ "loss": 0.2708,
1385
+ "step": 1770
1386
+ },
1387
+ {
1388
+ "epoch": 3.8528138528138527,
1389
+ "grad_norm": 1.833857536315918,
1390
+ "learning_rate": 1.2013574660633485e-05,
1391
+ "loss": 0.3016,
1392
+ "step": 1780
1393
+ },
1394
+ {
1395
+ "epoch": 3.8744588744588744,
1396
+ "grad_norm": 2.1259467601776123,
1397
+ "learning_rate": 1.1787330316742082e-05,
1398
+ "loss": 0.301,
1399
+ "step": 1790
1400
+ },
1401
+ {
1402
+ "epoch": 3.896103896103896,
1403
+ "grad_norm": 1.0809746980667114,
1404
+ "learning_rate": 1.156108597285068e-05,
1405
+ "loss": 0.2567,
1406
+ "step": 1800
1407
+ },
1408
+ {
1409
+ "epoch": 3.896103896103896,
1410
+ "eval_loss": 0.09367834776639938,
1411
+ "eval_runtime": 11.1921,
1412
+ "eval_samples_per_second": 44.674,
1413
+ "eval_steps_per_second": 0.715,
1414
+ "step": 1800
1415
+ },
1416
+ {
1417
+ "epoch": 3.9177489177489178,
1418
+ "grad_norm": 2.1658575534820557,
1419
+ "learning_rate": 1.1334841628959276e-05,
1420
+ "loss": 0.3016,
1421
+ "step": 1810
1422
+ },
1423
+ {
1424
+ "epoch": 3.9393939393939394,
1425
+ "grad_norm": 1.4649549722671509,
1426
+ "learning_rate": 1.1108597285067874e-05,
1427
+ "loss": 0.2925,
1428
+ "step": 1820
1429
+ },
1430
+ {
1431
+ "epoch": 3.961038961038961,
1432
+ "grad_norm": 1.6620761156082153,
1433
+ "learning_rate": 1.0882352941176471e-05,
1434
+ "loss": 0.2803,
1435
+ "step": 1830
1436
+ },
1437
+ {
1438
+ "epoch": 3.982683982683983,
1439
+ "grad_norm": 1.129351258277893,
1440
+ "learning_rate": 1.0656108597285067e-05,
1441
+ "loss": 0.2821,
1442
+ "step": 1840
1443
+ },
1444
+ {
1445
+ "epoch": 4.004329004329004,
1446
+ "grad_norm": 1.558613896369934,
1447
+ "learning_rate": 1.0429864253393667e-05,
1448
+ "loss": 0.2892,
1449
+ "step": 1850
1450
+ },
1451
+ {
1452
+ "epoch": 4.025974025974026,
1453
+ "grad_norm": 1.2767349481582642,
1454
+ "learning_rate": 1.0203619909502263e-05,
1455
+ "loss": 0.2511,
1456
+ "step": 1860
1457
+ },
1458
+ {
1459
+ "epoch": 4.0476190476190474,
1460
+ "grad_norm": 1.3410160541534424,
1461
+ "learning_rate": 9.97737556561086e-06,
1462
+ "loss": 0.2652,
1463
+ "step": 1870
1464
+ },
1465
+ {
1466
+ "epoch": 4.06926406926407,
1467
+ "grad_norm": 1.3820221424102783,
1468
+ "learning_rate": 9.751131221719458e-06,
1469
+ "loss": 0.2781,
1470
+ "step": 1880
1471
+ },
1472
+ {
1473
+ "epoch": 4.090909090909091,
1474
+ "grad_norm": 1.479778528213501,
1475
+ "learning_rate": 9.524886877828054e-06,
1476
+ "loss": 0.248,
1477
+ "step": 1890
1478
+ },
1479
+ {
1480
+ "epoch": 4.112554112554113,
1481
+ "grad_norm": 1.3408429622650146,
1482
+ "learning_rate": 9.298642533936652e-06,
1483
+ "loss": 0.2416,
1484
+ "step": 1900
1485
+ },
1486
+ {
1487
+ "epoch": 4.112554112554113,
1488
+ "eval_loss": 0.10034486651420593,
1489
+ "eval_runtime": 11.0609,
1490
+ "eval_samples_per_second": 45.204,
1491
+ "eval_steps_per_second": 0.723,
1492
+ "step": 1900
1493
+ },
1494
+ {
1495
+ "epoch": 4.134199134199134,
1496
+ "grad_norm": 1.6059556007385254,
1497
+ "learning_rate": 9.07239819004525e-06,
1498
+ "loss": 0.25,
1499
+ "step": 1910
1500
+ },
1501
+ {
1502
+ "epoch": 4.1558441558441555,
1503
+ "grad_norm": 1.424112319946289,
1504
+ "learning_rate": 8.846153846153847e-06,
1505
+ "loss": 0.2625,
1506
+ "step": 1920
1507
+ },
1508
+ {
1509
+ "epoch": 4.177489177489178,
1510
+ "grad_norm": 1.638130784034729,
1511
+ "learning_rate": 8.619909502262443e-06,
1512
+ "loss": 0.2623,
1513
+ "step": 1930
1514
+ },
1515
+ {
1516
+ "epoch": 4.199134199134199,
1517
+ "grad_norm": 1.5797659158706665,
1518
+ "learning_rate": 8.393665158371041e-06,
1519
+ "loss": 0.2646,
1520
+ "step": 1940
1521
+ },
1522
+ {
1523
+ "epoch": 4.220779220779221,
1524
+ "grad_norm": 1.5362834930419922,
1525
+ "learning_rate": 8.167420814479639e-06,
1526
+ "loss": 0.2544,
1527
+ "step": 1950
1528
+ },
1529
+ {
1530
+ "epoch": 4.242424242424242,
1531
+ "grad_norm": 1.6381897926330566,
1532
+ "learning_rate": 7.941176470588235e-06,
1533
+ "loss": 0.255,
1534
+ "step": 1960
1535
+ },
1536
+ {
1537
+ "epoch": 4.264069264069264,
1538
+ "grad_norm": 1.8974134922027588,
1539
+ "learning_rate": 7.714932126696834e-06,
1540
+ "loss": 0.2762,
1541
+ "step": 1970
1542
+ },
1543
+ {
1544
+ "epoch": 4.285714285714286,
1545
+ "grad_norm": 1.830533504486084,
1546
+ "learning_rate": 7.48868778280543e-06,
1547
+ "loss": 0.2733,
1548
+ "step": 1980
1549
+ },
1550
+ {
1551
+ "epoch": 4.307359307359308,
1552
+ "grad_norm": 1.5712575912475586,
1553
+ "learning_rate": 7.262443438914028e-06,
1554
+ "loss": 0.256,
1555
+ "step": 1990
1556
+ },
1557
+ {
1558
+ "epoch": 4.329004329004329,
1559
+ "grad_norm": 1.6964036226272583,
1560
+ "learning_rate": 7.0361990950226245e-06,
1561
+ "loss": 0.2512,
1562
+ "step": 2000
1563
+ },
1564
+ {
1565
+ "epoch": 4.329004329004329,
1566
+ "eval_loss": 0.09686653316020966,
1567
+ "eval_runtime": 11.0207,
1568
+ "eval_samples_per_second": 45.369,
1569
+ "eval_steps_per_second": 0.726,
1570
+ "step": 2000
1571
+ },
1572
+ {
1573
+ "epoch": 4.35064935064935,
1574
+ "grad_norm": 1.8361965417861938,
1575
+ "learning_rate": 6.809954751131221e-06,
1576
+ "loss": 0.243,
1577
+ "step": 2010
1578
+ },
1579
+ {
1580
+ "epoch": 4.372294372294372,
1581
+ "grad_norm": 1.6544777154922485,
1582
+ "learning_rate": 6.58371040723982e-06,
1583
+ "loss": 0.2711,
1584
+ "step": 2020
1585
+ },
1586
+ {
1587
+ "epoch": 4.393939393939394,
1588
+ "grad_norm": 1.1742023229599,
1589
+ "learning_rate": 6.357466063348416e-06,
1590
+ "loss": 0.2406,
1591
+ "step": 2030
1592
+ },
1593
+ {
1594
+ "epoch": 4.415584415584416,
1595
+ "grad_norm": 1.4244996309280396,
1596
+ "learning_rate": 6.131221719457014e-06,
1597
+ "loss": 0.243,
1598
+ "step": 2040
1599
+ },
1600
+ {
1601
+ "epoch": 4.437229437229437,
1602
+ "grad_norm": 1.6553417444229126,
1603
+ "learning_rate": 5.904977375565611e-06,
1604
+ "loss": 0.2433,
1605
+ "step": 2050
1606
+ },
1607
+ {
1608
+ "epoch": 4.458874458874459,
1609
+ "grad_norm": 1.690132737159729,
1610
+ "learning_rate": 5.678733031674208e-06,
1611
+ "loss": 0.2563,
1612
+ "step": 2060
1613
+ },
1614
+ {
1615
+ "epoch": 4.48051948051948,
1616
+ "grad_norm": 1.625807762145996,
1617
+ "learning_rate": 5.452488687782806e-06,
1618
+ "loss": 0.2795,
1619
+ "step": 2070
1620
+ },
1621
+ {
1622
+ "epoch": 4.5021645021645025,
1623
+ "grad_norm": 1.5032762289047241,
1624
+ "learning_rate": 5.226244343891403e-06,
1625
+ "loss": 0.2638,
1626
+ "step": 2080
1627
+ },
1628
+ {
1629
+ "epoch": 4.523809523809524,
1630
+ "grad_norm": 1.5924805402755737,
1631
+ "learning_rate": 5e-06,
1632
+ "loss": 0.2327,
1633
+ "step": 2090
1634
+ },
1635
+ {
1636
+ "epoch": 4.545454545454545,
1637
+ "grad_norm": 1.765118956565857,
1638
+ "learning_rate": 4.773755656108597e-06,
1639
+ "loss": 0.235,
1640
+ "step": 2100
1641
+ },
1642
+ {
1643
+ "epoch": 4.545454545454545,
1644
+ "eval_loss": 0.10021113604307175,
1645
+ "eval_runtime": 11.006,
1646
+ "eval_samples_per_second": 45.43,
1647
+ "eval_steps_per_second": 0.727,
1648
+ "step": 2100
1649
+ },
1650
+ {
1651
+ "epoch": 4.567099567099567,
1652
+ "grad_norm": 1.4232510328292847,
1653
+ "learning_rate": 4.547511312217195e-06,
1654
+ "loss": 0.2444,
1655
+ "step": 2110
1656
+ },
1657
+ {
1658
+ "epoch": 4.588744588744589,
1659
+ "grad_norm": 1.6832308769226074,
1660
+ "learning_rate": 4.321266968325792e-06,
1661
+ "loss": 0.282,
1662
+ "step": 2120
1663
+ },
1664
+ {
1665
+ "epoch": 4.6103896103896105,
1666
+ "grad_norm": 1.4508180618286133,
1667
+ "learning_rate": 4.0950226244343895e-06,
1668
+ "loss": 0.2541,
1669
+ "step": 2130
1670
+ },
1671
+ {
1672
+ "epoch": 4.632034632034632,
1673
+ "grad_norm": 1.5618845224380493,
1674
+ "learning_rate": 3.868778280542986e-06,
1675
+ "loss": 0.2344,
1676
+ "step": 2140
1677
+ },
1678
+ {
1679
+ "epoch": 4.653679653679654,
1680
+ "grad_norm": 1.700337529182434,
1681
+ "learning_rate": 3.642533936651584e-06,
1682
+ "loss": 0.2605,
1683
+ "step": 2150
1684
+ },
1685
+ {
1686
+ "epoch": 4.675324675324675,
1687
+ "grad_norm": 1.8766915798187256,
1688
+ "learning_rate": 3.416289592760181e-06,
1689
+ "loss": 0.2657,
1690
+ "step": 2160
1691
+ },
1692
+ {
1693
+ "epoch": 4.696969696969697,
1694
+ "grad_norm": 1.39222252368927,
1695
+ "learning_rate": 3.190045248868778e-06,
1696
+ "loss": 0.2724,
1697
+ "step": 2170
1698
+ },
1699
+ {
1700
+ "epoch": 4.7186147186147185,
1701
+ "grad_norm": 1.7200310230255127,
1702
+ "learning_rate": 2.9638009049773754e-06,
1703
+ "loss": 0.2473,
1704
+ "step": 2180
1705
+ },
1706
+ {
1707
+ "epoch": 4.740259740259741,
1708
+ "grad_norm": 1.4263789653778076,
1709
+ "learning_rate": 2.737556561085973e-06,
1710
+ "loss": 0.2735,
1711
+ "step": 2190
1712
+ },
1713
+ {
1714
+ "epoch": 4.761904761904762,
1715
+ "grad_norm": 1.4629650115966797,
1716
+ "learning_rate": 2.5113122171945704e-06,
1717
+ "loss": 0.2453,
1718
+ "step": 2200
1719
+ },
1720
+ {
1721
+ "epoch": 4.761904761904762,
1722
+ "eval_loss": 0.09669920057058334,
1723
+ "eval_runtime": 11.2945,
1724
+ "eval_samples_per_second": 44.269,
1725
+ "eval_steps_per_second": 0.708,
1726
+ "step": 2200
1727
+ },
1728
+ {
1729
+ "epoch": 4.783549783549784,
1730
+ "grad_norm": 1.5298959016799927,
1731
+ "learning_rate": 2.2850678733031673e-06,
1732
+ "loss": 0.2527,
1733
+ "step": 2210
1734
+ },
1735
+ {
1736
+ "epoch": 4.805194805194805,
1737
+ "grad_norm": 1.4086050987243652,
1738
+ "learning_rate": 2.058823529411765e-06,
1739
+ "loss": 0.2351,
1740
+ "step": 2220
1741
+ },
1742
+ {
1743
+ "epoch": 4.8268398268398265,
1744
+ "grad_norm": 1.6125555038452148,
1745
+ "learning_rate": 1.8325791855203622e-06,
1746
+ "loss": 0.272,
1747
+ "step": 2230
1748
+ },
1749
+ {
1750
+ "epoch": 4.848484848484849,
1751
+ "grad_norm": 1.69878089427948,
1752
+ "learning_rate": 1.6063348416289593e-06,
1753
+ "loss": 0.2545,
1754
+ "step": 2240
1755
+ },
1756
+ {
1757
+ "epoch": 4.87012987012987,
1758
+ "grad_norm": 1.387439250946045,
1759
+ "learning_rate": 1.3800904977375566e-06,
1760
+ "loss": 0.2617,
1761
+ "step": 2250
1762
+ },
1763
+ {
1764
+ "epoch": 4.891774891774892,
1765
+ "grad_norm": 1.551837682723999,
1766
+ "learning_rate": 1.153846153846154e-06,
1767
+ "loss": 0.2384,
1768
+ "step": 2260
1769
+ },
1770
+ {
1771
+ "epoch": 4.913419913419913,
1772
+ "grad_norm": 1.6093473434448242,
1773
+ "learning_rate": 9.276018099547512e-07,
1774
+ "loss": 0.2494,
1775
+ "step": 2270
1776
+ },
1777
+ {
1778
+ "epoch": 4.935064935064935,
1779
+ "grad_norm": 1.4138660430908203,
1780
+ "learning_rate": 7.013574660633485e-07,
1781
+ "loss": 0.2371,
1782
+ "step": 2280
1783
+ },
1784
+ {
1785
+ "epoch": 4.956709956709957,
1786
+ "grad_norm": 1.7874048948287964,
1787
+ "learning_rate": 4.751131221719457e-07,
1788
+ "loss": 0.2562,
1789
+ "step": 2290
1790
+ },
1791
+ {
1792
+ "epoch": 4.978354978354979,
1793
+ "grad_norm": 1.470076322555542,
1794
+ "learning_rate": 2.4886877828054297e-07,
1795
+ "loss": 0.2483,
1796
+ "step": 2300
1797
+ },
1798
+ {
1799
+ "epoch": 4.978354978354979,
1800
+ "eval_loss": 0.09722720086574554,
1801
+ "eval_runtime": 11.0178,
1802
+ "eval_samples_per_second": 45.381,
1803
+ "eval_steps_per_second": 0.726,
1804
+ "step": 2300
1805
+ },
1806
+ {
1807
+ "epoch": 5.0,
1808
+ "grad_norm": 1.6692209243774414,
1809
+ "learning_rate": 2.2624434389140274e-08,
1810
+ "loss": 0.2477,
1811
+ "step": 2310
1812
+ }
1813
+ ],
1814
+ "logging_steps": 10,
1815
+ "max_steps": 2310,
1816
+ "num_input_tokens_seen": 0,
1817
+ "num_train_epochs": 5,
1818
+ "save_steps": 500,
1819
+ "stateful_callbacks": {
1820
+ "TrainerControl": {
1821
+ "args": {
1822
+ "should_epoch_stop": false,
1823
+ "should_evaluate": false,
1824
+ "should_log": false,
1825
+ "should_save": true,
1826
+ "should_training_stop": true
1827
+ },
1828
+ "attributes": {}
1829
+ }
1830
+ },
1831
+ "total_flos": 1.5716476802941583e+19,
1832
+ "train_batch_size": 64,
1833
+ "trial_name": null,
1834
+ "trial_params": null
1835
+ }
checkpoint-2310/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5ee6fb727a5b92509e0b07a43bb3b13192a4cd21f2c87960f9bd90ffb0b22fd
3
+ size 5777
git_hash.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ feffe2baab62fd0855fe1ec3334fcecf3eff9f1a
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 300,
3
+ "dither": 0.0,
4
+ "feature_extractor_type": "WhisperFeatureExtractor",
5
+ "feature_size": 128,
6
+ "hop_length": 160,
7
+ "image_mean": [
8
+ 0.48145466,
9
+ 0.4578275,
10
+ 0.40821073
11
+ ],
12
+ "image_processor_type": "Qwen2VLImageProcessor",
13
+ "image_std": [
14
+ 0.26862954,
15
+ 0.26130258,
16
+ 0.27577711
17
+ ],
18
+ "max_pixels": 802816,
19
+ "merge_size": 2,
20
+ "min_pixels": 3136,
21
+ "n_fft": 400,
22
+ "n_samples": 4800000,
23
+ "nb_max_frames": 30000,
24
+ "padding_side": "right",
25
+ "padding_value": 0.0,
26
+ "patch_size": 14,
27
+ "processor_class": "ColQwen2_5OmniProcessor",
28
+ "return_attention_mask": true,
29
+ "sampling_rate": 16000,
30
+ "temporal_patch_size": 2
31
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|AUDIO|>",
6
+ "<|audio_bos|>",
7
+ "<|audio_eos|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_bos|>",
12
+ "<|vision_eos|>",
13
+ "<|vision_pad|>",
14
+ "<|IMAGE|>",
15
+ "<|VIDEO|>"
16
+ ],
17
+ "audio_bos_token": "<|audio_bos|>",
18
+ "audio_eos_token": "<|audio_eos|>",
19
+ "audio_token": "<|AUDIO|>",
20
+ "eos_token": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false
26
+ },
27
+ "image_token": "<|IMAGE|>",
28
+ "pad_token": {
29
+ "content": "<|endoftext|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ },
35
+ "video_token": "<|VIDEO|>",
36
+ "vision_bos_token": "<|vision_bos|>",
37
+ "vision_eos_token": "<|vision_eos|>"
38
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8441917e39ae0244e06d704b95b3124795cec478e297f9afac39ba670d7e9d99
3
+ size 11421870
tokenizer_config.json ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "151643": {
5
+ "content": "<|endoftext|>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "151644": {
13
+ "content": "<|im_start|>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "151645": {
21
+ "content": "<|im_end|>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "151646": {
29
+ "content": "<|AUDIO|>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "151647": {
37
+ "content": "<|audio_bos|>",
38
+ "lstrip": false,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ },
44
+ "151648": {
45
+ "content": "<|audio_eos|>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false,
50
+ "special": true
51
+ },
52
+ "151649": {
53
+ "content": "<|box_end|>",
54
+ "lstrip": false,
55
+ "normalized": false,
56
+ "rstrip": false,
57
+ "single_word": false,
58
+ "special": true
59
+ },
60
+ "151650": {
61
+ "content": "<|quad_start|>",
62
+ "lstrip": false,
63
+ "normalized": false,
64
+ "rstrip": false,
65
+ "single_word": false,
66
+ "special": true
67
+ },
68
+ "151651": {
69
+ "content": "<|quad_end|>",
70
+ "lstrip": false,
71
+ "normalized": false,
72
+ "rstrip": false,
73
+ "single_word": false,
74
+ "special": true
75
+ },
76
+ "151652": {
77
+ "content": "<|vision_bos|>",
78
+ "lstrip": false,
79
+ "normalized": false,
80
+ "rstrip": false,
81
+ "single_word": false,
82
+ "special": true
83
+ },
84
+ "151653": {
85
+ "content": "<|vision_eos|>",
86
+ "lstrip": false,
87
+ "normalized": false,
88
+ "rstrip": false,
89
+ "single_word": false,
90
+ "special": true
91
+ },
92
+ "151654": {
93
+ "content": "<|vision_pad|>",
94
+ "lstrip": false,
95
+ "normalized": false,
96
+ "rstrip": false,
97
+ "single_word": false,
98
+ "special": true
99
+ },
100
+ "151655": {
101
+ "content": "<|IMAGE|>",
102
+ "lstrip": false,
103
+ "normalized": false,
104
+ "rstrip": false,
105
+ "single_word": false,
106
+ "special": true
107
+ },
108
+ "151656": {
109
+ "content": "<|VIDEO|>",
110
+ "lstrip": false,
111
+ "normalized": false,
112
+ "rstrip": false,
113
+ "single_word": false,
114
+ "special": true
115
+ },
116
+ "151657": {
117
+ "content": "<tool_call>",
118
+ "lstrip": false,
119
+ "normalized": false,
120
+ "rstrip": false,
121
+ "single_word": false,
122
+ "special": false
123
+ },
124
+ "151658": {
125
+ "content": "</tool_call>",
126
+ "lstrip": false,
127
+ "normalized": false,
128
+ "rstrip": false,
129
+ "single_word": false,
130
+ "special": false
131
+ },
132
+ "151659": {
133
+ "content": "<|fim_prefix|>",
134
+ "lstrip": false,
135
+ "normalized": false,
136
+ "rstrip": false,
137
+ "single_word": false,
138
+ "special": false
139
+ },
140
+ "151660": {
141
+ "content": "<|fim_middle|>",
142
+ "lstrip": false,
143
+ "normalized": false,
144
+ "rstrip": false,
145
+ "single_word": false,
146
+ "special": false
147
+ },
148
+ "151661": {
149
+ "content": "<|fim_suffix|>",
150
+ "lstrip": false,
151
+ "normalized": false,
152
+ "rstrip": false,
153
+ "single_word": false,
154
+ "special": false
155
+ },
156
+ "151662": {
157
+ "content": "<|fim_pad|>",
158
+ "lstrip": false,
159
+ "normalized": false,
160
+ "rstrip": false,
161
+ "single_word": false,
162
+ "special": false
163
+ },
164
+ "151663": {
165
+ "content": "<|repo_name|>",
166
+ "lstrip": false,
167
+ "normalized": false,
168
+ "rstrip": false,
169
+ "single_word": false,
170
+ "special": false
171
+ },
172
+ "151664": {
173
+ "content": "<|file_sep|>",
174
+ "lstrip": false,
175
+ "normalized": false,
176
+ "rstrip": false,
177
+ "single_word": false,
178
+ "special": false
179
+ }
180
+ },
181
+ "additional_special_tokens": [
182
+ "<|im_start|>",
183
+ "<|im_end|>",
184
+ "<|AUDIO|>",
185
+ "<|audio_bos|>",
186
+ "<|audio_eos|>",
187
+ "<|box_end|>",
188
+ "<|quad_start|>",
189
+ "<|quad_end|>",
190
+ "<|vision_bos|>",
191
+ "<|vision_eos|>",
192
+ "<|vision_pad|>",
193
+ "<|IMAGE|>",
194
+ "<|VIDEO|>"
195
+ ],
196
+ "audio_bos_token": "<|audio_bos|>",
197
+ "audio_eos_token": "<|audio_eos|>",
198
+ "audio_token": "<|AUDIO|>",
199
+ "bos_token": null,
200
+ "clean_up_tokenization_spaces": false,
201
+ "eos_token": "<|im_end|>",
202
+ "errors": "replace",
203
+ "extra_special_tokens": {
204
+ "audio_bos_token": "<|audio_bos|>",
205
+ "audio_eos_token": "<|audio_eos|>",
206
+ "audio_token": "<|AUDIO|>",
207
+ "image_token": "<|IMAGE|>",
208
+ "video_token": "<|VIDEO|>",
209
+ "vision_bos_token": "<|vision_bos|>",
210
+ "vision_eos_token": "<|vision_eos|>"
211
+ },
212
+ "image_token": "<|IMAGE|>",
213
+ "model_max_length": 32768,
214
+ "pad_token": "<|endoftext|>",
215
+ "processor_class": "ColQwen2_5OmniProcessor",
216
+ "split_special_tokens": false,
217
+ "tokenizer_class": "Qwen2Tokenizer",
218
+ "unk_token": null,
219
+ "video_token": "<|VIDEO|>",
220
+ "vision_bos_token": "<|vision_bos|>",
221
+ "vision_eos_token": "<|vision_eos|>"
222
+ }
train_colqwenomni_model.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import shutil
3
+ from pathlib import Path
4
+
5
+ import torch
6
+ from datasets import load_dataset
7
+ from peft import LoraConfig
8
+ from transformers import TrainingArguments
9
+
10
+ from colpali_engine.data.dataset import ColPaliEngineDataset
11
+ from colpali_engine.loss.late_interaction_losses import ColbertLoss, ColbertPairwiseCELoss
12
+ from colpali_engine.models import ColQwen2_5Omni, ColQwen2_5OmniProcessor
13
+ from colpali_engine.trainer.colmodel_torch_training import ColModelTorchTraining
14
+ from colpali_engine.trainer.colmodel_training import ColModelTraining, ColModelTrainingConfig
15
+
16
+
17
+ def parse_args():
18
+ p = argparse.ArgumentParser()
19
+ p.add_argument("--output-dir", type=str, required=True, help="where to write model + script copy")
20
+ p.add_argument("--lr", type=float, default=1e-4, help="learning rate")
21
+ p.add_argument("--tau", type=float, default=0.02, help="temperature for loss function")
22
+ p.add_argument("--trainer", type=str, default="hf", choices=["torch", "hf"], help="trainer to use")
23
+ p.add_argument("--loss", type=str, default="ce", choices=["ce", "pairwise"], help="loss function to use")
24
+ p.add_argument("--peft", action="store_true", help="use PEFT for training")
25
+ return p.parse_args()
26
+
27
+
28
+ if __name__ == "__main__":
29
+ args = parse_args()
30
+
31
+ if args.loss == "ce":
32
+ loss_func = ColbertLoss(
33
+ temperature=args.tau,
34
+ normalize_scores=True,
35
+ use_smooth_max=False,
36
+ pos_aware_negative_filtering=False,
37
+ )
38
+ elif args.loss == "pairwise":
39
+ loss_func = ColbertPairwiseCELoss(
40
+ normalize_scores=False,
41
+ )
42
+ else:
43
+ raise ValueError(f"Unknown loss function: {args.loss}")
44
+
45
+ config = ColModelTrainingConfig(
46
+ output_dir=args.output_dir,
47
+ processor=ColQwen2_5OmniProcessor.from_pretrained(
48
+ pretrained_model_name_or_path="./models/base_models/colqwen2.5omni-base",
49
+ ),
50
+ model=ColQwen2_5Omni.from_pretrained(
51
+ pretrained_model_name_or_path="./models/base_models/colqwen2.5omni-base",
52
+ torch_dtype=torch.bfloat16,
53
+ attn_implementation="flash_attention_2",
54
+ ),
55
+ train_dataset=ColPaliEngineDataset(
56
+ load_dataset("./data_dir/colpali_train_set", split="train"), pos_target_column_name="image"
57
+ ),
58
+ eval_dataset=ColPaliEngineDataset(
59
+ load_dataset("./data_dir/colpali_train_set", split="test"), pos_target_column_name="image"
60
+ ),
61
+ run_eval=True,
62
+ loss_func=loss_func,
63
+ tr_args=TrainingArguments(
64
+ output_dir=None,
65
+ overwrite_output_dir=True,
66
+ num_train_epochs=5,
67
+ per_device_train_batch_size=64,
68
+ gradient_checkpointing=True,
69
+ gradient_checkpointing_kwargs={"use_reentrant": False},
70
+ per_device_eval_batch_size=16,
71
+ eval_strategy="steps",
72
+ dataloader_num_workers=2,
73
+ save_steps=500,
74
+ logging_steps=10,
75
+ eval_steps=100,
76
+ warmup_steps=100,
77
+ learning_rate=args.lr,
78
+ save_total_limit=1,
79
+ dataloader_prefetch_factor=2,
80
+ dataloader_pin_memory=True,
81
+ dataloader_persistent_workers=True,
82
+ ),
83
+ peft_config=LoraConfig(
84
+ r=32,
85
+ lora_alpha=32,
86
+ lora_dropout=0.1,
87
+ init_lora_weights="gaussian",
88
+ bias="none",
89
+ task_type="FEATURE_EXTRACTION",
90
+ target_modules="(.*(model)(?!.*visual).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)",
91
+ )
92
+ if args.peft
93
+ else None,
94
+ )
95
+ config.model.audio_tower = torch.nn.Identity() # Disable the audio tower
96
+ # config.model = torch.compile(config.model, dynamic=True, fullgraph=True, mode="max-autotune")
97
+ # make sure output_dir exists and copy script for provenance
98
+ Path(config.output_dir).mkdir(parents=True, exist_ok=True)
99
+ shutil.copy(Path(__file__), Path(config.output_dir) / Path(__file__).name)
100
+
101
+ trainer = ColModelTraining(config) if args.trainer == "hf" else ColModelTorchTraining(config)
102
+ trainer.train()
103
+ trainer.save()
video_preprocessor_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "chunk_length": 300,
3
+ "crop_size": null,
4
+ "data_format": "channels_first",
5
+ "default_to_square": true,
6
+ "device": null,
7
+ "dither": 0.0,
8
+ "do_center_crop": null,
9
+ "do_convert_rgb": true,
10
+ "do_normalize": true,
11
+ "do_pad": null,
12
+ "do_rescale": true,
13
+ "do_resize": true,
14
+ "do_sample_frames": false,
15
+ "feature_extractor_type": "WhisperFeatureExtractor",
16
+ "feature_size": 128,
17
+ "fps": null,
18
+ "hop_length": 160,
19
+ "image_mean": [
20
+ 0.48145466,
21
+ 0.4578275,
22
+ 0.40821073
23
+ ],
24
+ "image_processor_type": "Qwen2VLImageProcessor",
25
+ "image_std": [
26
+ 0.26862954,
27
+ 0.26130258,
28
+ 0.27577711
29
+ ],
30
+ "input_data_format": null,
31
+ "max_frames": 768,
32
+ "max_pixels": 12845056,
33
+ "merge_size": 2,
34
+ "min_frames": 4,
35
+ "min_pixels": 3136,
36
+ "n_fft": 400,
37
+ "n_samples": 4800000,
38
+ "nb_max_frames": 30000,
39
+ "num_frames": null,
40
+ "padding_side": "right",
41
+ "padding_value": 0.0,
42
+ "patch_size": 14,
43
+ "processor_class": "ColQwen2_5OmniProcessor",
44
+ "resample": 3,
45
+ "rescale_factor": 0.00392156862745098,
46
+ "return_attention_mask": true,
47
+ "sampling_rate": 16000,
48
+ "size": {
49
+ "longest_edge": 12845056,
50
+ "shortest_edge": 3136
51
+ },
52
+ "size_divisor": null,
53
+ "temporal_patch_size": 2,
54
+ "video_metadata": null,
55
+ "video_processor_type": "Qwen2VLVideoProcessor"
56
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff