File size: 9,902 Bytes
0bc59cd
 
 
 
 
 
 
 
 
 
 
 
 
6ad634c
0bc59cd
 
 
 
 
 
 
 
8ad932f
0bc59cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b702a18
 
 
 
 
 
 
 
 
0bc59cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31dc2a
0bc59cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f31dc2a
0bc59cd
 
 
 
 
8ad932f
 
 
 
 
 
 
 
0bc59cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ad932f
0bc59cd
 
 
 
8ad932f
0bc59cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83c33b4
 
6ad634c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
---
language:
- multilingual
tags:
- audio
- text
- multimodal
- seamless
- subtitle-editing-time-prediction
- translation-aware
- language-pairs
library_name: transformers
base_model: facebook/hf-seamless-m4t-medium
license: cc-by-nc-4.0
---

# videoloc/seamless-langpairs

## Model Description

This is a **SeamlessLanguagePairs** model that processes audio and text inputs with both translation awareness and language pair embeddings to predict **Time To Edit (TTE)** for subtitle segments. Given an audio segment and its corresponding subtitle text, the model predicts how much time (in seconds) would be required to edit/refine that subtitle segment, taking into account both whether the subtitle is translated and the specific language pair involved.

The model extends the SeamlessM4T architecture with both translation features and language pair embeddings, providing the most granular control for multilingual scenarios across **5 languages: English, French, Spanish, Italian, and German** with **21 different translation pairs** between them (e.g., EN→FR, ES→DE, IT→EN, etc.).

### Key Features

- **Language Pair Embeddings**: Fine-grained control for 21 language pairs plus "other"
- **Translation-Aware Processing**: Distinguishes between original and translated content
- **Multimodal Processing**: Simultaneously processes audio (16kHz) and text inputs
- **Frozen Encoders**: Uses pre-trained SeamlessM4T encoders (frozen for stability)
- **Enhanced Architecture**: Adds both translation and language pair embeddings
- **TTE Prediction**: Predicts editing time required for subtitle segments
- **Direct Output**: Raw time values in seconds for immediate use

## Model Architecture

The model extends the basic SeamlessM4T architecture with both translation and language pair awareness:

1. **Audio Processing**: 
   - SeamlessM4T speech encoder (frozen) processes raw audio input
   - Audio projection layer maps speech encoder output to 1024 dimensions
   - Mean pooling over sequence length to get fixed-size audio embedding

2. **Text Processing**:
   - SeamlessM4T text encoder (frozen) processes tokenized text input  
   - Text projection layer maps text encoder output to 1024 dimensions
   - Mean pooling over sequence length to get fixed-size text embedding

3. **Translation Feature Processing**:
   - Binary translation flag (0/1) indicating original vs translated content
   - Translation projection layer maps binary input to 32 dimensions
   - Learned embedding helps model distinguish translation effects

4. **Language Pair Processing**:
   - Categorical language pair ID (0-20) for specific language combinations
   - Language pair embedding layer maps IDs to 64-dimensional vectors
   - Captures language-specific temporal alignment patterns

5. **Feature Fusion**:
   - Audio, text, translation, and language pair embeddings are concatenated (2144 total dimensions)
   - Simple concatenation without complex cross-modal interactions

6. **Regression Head**:
   - Multi-layer perceptron: 2144 → 1024 → 512 → 256 → 1
   - ReLU activations and dropout for regularization
   - Single output for TTE prediction (regression, in seconds)

## Quick Start

### Installation
```bash
pip install transformers torch torchaudio huggingface_hub
```

### Basic Usage
```python
from transformers import AutoModel, AutoConfig
from huggingface_hub import hf_hub_download
import torch
import numpy as np
import importlib.util

# Load model - custom architecture requires importing the model class
model_files = hf_hub_download(repo_id="videoloc/seamless-langpairs", filename="modeling_seamless_langpairs.py")
spec = importlib.util.spec_from_file_location("modeling_seamless_langpairs", model_files)
modeling_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(modeling_module)

# Now load the model using the custom class
config = modeling_module.SeamlessLanguagePairsConfig.from_pretrained("videoloc/seamless-langpairs")
model = modeling_module.HFSeamlessLanguagePairs.from_pretrained("videoloc/seamless-langpairs")

# Load the data collator (included in this repo)
collator_file = hf_hub_download(repo_id="videoloc/seamless-langpairs", filename="data_collator.py")
spec = importlib.util.spec_from_file_location("data_collator", collator_file)
collator_module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(collator_module)

# Initialize data collator
data_collator = collator_module.DataCollatorSimpleSeamless(
    processor="facebook/hf-seamless-m4t-medium",
    max_audio_length_sec=8.0,
    max_text_length=256
)

# Prepare your data with translation and language pair information
your_data = [
    {
        'raw_audio': np.random.randn(16000 * 5),  # 5 seconds at 16kHz
        'raw_text': "Your subtitle text here",
        'is_translation': 1,       # 1 for translated content, 0 for original
        'language_pair_id': 5,     # 0-20 for specific language pairs
    }
]

# Process and run inference 
batch = data_collator(your_data)
model.eval()
with torch.no_grad():
    outputs = model(**batch)
    tte_prediction = outputs.logits.item()
    
print(f"Predicted Time To Edit (TTE): {tte_prediction:.2f} seconds")
```

## Model Details

- **Base Model**: SeamlessM4T (facebook/hf-seamless-m4t-medium)
- **Audio Encoder**: Frozen SeamlessM4T speech encoder  
- **Text Encoder**: Frozen SeamlessM4T text encoder
- **Hidden Size**: 1024
- **Translation Embedding**: 32 dimensions
- **Language Pair Embedding**: 64 dimensions  
- **Number of Language Pairs**: 21 (plus "other")
- **Audio Input**: 16kHz
- **Translation Input**: Binary flag (0/1)
- **Language Pair Input**: Categorical ID (0-20)
- **Output**: Single regression value (TTE in seconds)
- **Task**: Subtitle editing time prediction

## Supported Language Pairs

The model supports 21 specific translation pairs between 5 languages:

**Languages**: English (EN), French (FR), Spanish (ES), Italian (IT), German (DE)

**Translation Pairs**: All combinations between the 5 languages create various directional pairs (e.g., EN→FR, FR→EN, ES→IT, DE→ES, etc.). The model uses language pair IDs (0-20) to identify specific translation directions, with ID 21 reserved for "other" pairs.

## Data Format

Your input data should be a list of dictionaries with:
- `raw_audio`: NumPy array of audio samples (16kHz sampling rate)
- `raw_text`: String of subtitle text  
- `is_translation`: Binary flag (1 for translated, 0 for original content)
- `language_pair_id`: Integer ID (0-20) for specific language pair
- `labels`: Target TTE values in seconds (optional, for training)

Example:
```python
data = [
    {
        'raw_audio': audio_samples,  # shape: (num_samples,) at 16kHz
        'raw_text': "Subtitle text content",
        'is_translation': 1,     # 1 = translated, 0 = original
        'language_pair_id': 5,   # 0-20 for language pairs
        'labels': 2.5  # optional TTE target value in seconds
    }
]
```

## Performance Metrics

- **Best Eval RMSE**: 33.34

## Training Details

- **Base Model**: facebook/hf-seamless-m4t-medium
- **Model Type**: seamless_lang_pairs
- **Epochs**: 10
- **Batch Size (Train)**: 32
- **Batch Size (Eval)**: 64
- **Learning Rate**: 1.2e-4
- **LR Scheduler**: cosine_with_restarts
- **Warmup Ratio**: 0.05
- **Weight Decay**: 0.001
- **Optimizer**: AdamW (torch)
- **Max Grad Norm**: 1.0
- **FP16**: True
- **Early Stopping Patience**: 5
- **Audio Max Length**: 8.0 seconds
- **Text Max Length**: 256 tokens
- **Sample Rate**: 16kHz
- **Translation Feature**: Binary flag (0/1)
- **Language Pairs**: 21 pairs + other
- **Language Pair Embedding**: 64 dimensions
- **Normalization**: None (raw values)
- **Dataset Split**: 80/20 train/test
- **Random Seed**: 42
- **Metric**: RMSE (lower is better)

## Training Configuration

The model was trained with the following specifications:

- **Dataset**: Multimodal audio-subtitle pairs with translation and language pair annotations (5 languages: EN, FR, ES, IT, DE with 21 pairs)
- **Train/Test Split**: 80/20 with random seed 42
- **Audio Processing**: 16kHz sampling, max 8.0 seconds, no offset
- **Text Processing**: Max 256 tokens
- **Translation Feature**: Binary flag indicating original vs translated content
- **Language Pairs**: 21 translation pairs from 5 languages (EN, FR, ES, IT, DE) plus "other" category
- **Normalization**: None (raw TTE values in seconds)
- **Caching**: Audio segments cached and compressed for efficiency

## Usage Notes

- This is the **most advanced** variant with both translation and language pair features
- For simpler models, see `seamless-basic` (audio+text only) or `seamless-translation` (with translation flag)
- Model expects 16kHz audio input (automatically resampled by data collator)
- Both translation flag and language pair ID significantly impact predictions
- Language pair embeddings capture language-specific temporal patterns
- No feature normalization applied - outputs raw TTE predictions in seconds
- Optimized for fine-grained subtitle editing time estimation tasks

## Limitations

- Requires both translation and language pair annotations in training data
- Language pair embeddings are dataset-specific (top 21 pairs from training)
- Designed for TTE prediction, not general audio-text matching
- Performance may vary on out-of-domain content and unseen language pairs
- Requires specific data preprocessing (use included data collator)

## Related Models

- **[seamless-basic](https://huggingface.co/videoloc/seamless-basic)**: Basic audio+text model without translation or language features
- **[seamless-translation](https://huggingface.co/videoloc/seamless-translation)**: Includes translation awareness but no language pair embeddings
- **[seamless-crossattention](https://huggingface.co/videoloc/seamless-crossattention)**: Advanced cross-modal attention mechanisms for sophisticated audio-text interactions