Upload folder using huggingface_hub
Browse files- README.md +6 -6
- __init__.py +6 -0
- example_usage.py +1 -0
- modeling_seamless_basic.py +111 -0
README.md
CHANGED
@@ -64,7 +64,7 @@ import torch
|
|
64 |
import numpy as np
|
65 |
import importlib.util
|
66 |
|
67 |
-
# Load model
|
68 |
model = AutoModel.from_pretrained("videoloc/seamless-basic")
|
69 |
config = AutoConfig.from_pretrained("videoloc/seamless-basic")
|
70 |
|
@@ -75,11 +75,11 @@ collator_module = importlib.util.module_from_spec(spec)
|
|
75 |
spec.loader.exec_module(collator_module)
|
76 |
|
77 |
# Initialize data collator
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
|
84 |
# Prepare your data
|
85 |
your_data = [
|
|
|
64 |
import numpy as np
|
65 |
import importlib.util
|
66 |
|
67 |
+
# Load model - architecture is included in the repository
|
68 |
model = AutoModel.from_pretrained("videoloc/seamless-basic")
|
69 |
config = AutoConfig.from_pretrained("videoloc/seamless-basic")
|
70 |
|
|
|
75 |
spec.loader.exec_module(collator_module)
|
76 |
|
77 |
# Initialize data collator
|
78 |
+
data_collator = collator_module.DataCollatorSimpleSeamless(
|
79 |
+
processor="facebook/hf-seamless-m4t-medium",
|
80 |
+
max_audio_length_sec=8.0,
|
81 |
+
max_text_length=256
|
82 |
+
)
|
83 |
|
84 |
# Prepare your data
|
85 |
your_data = [
|
__init__.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
SeamlessBasic model for HuggingFace Transformers
|
3 |
+
"""
|
4 |
+
from .modeling_seamless_basic import HFSeamlessBasic, SeamlessBasicConfig
|
5 |
+
|
6 |
+
__all__ = ["HFSeamlessBasic", "SeamlessBasicConfig"]
|
example_usage.py
CHANGED
@@ -8,6 +8,7 @@ import numpy as np
|
|
8 |
import importlib.util
|
9 |
|
10 |
def load_model_and_collator():
|
|
|
11 |
model = AutoModel.from_pretrained("videoloc/seamless-basic")
|
12 |
config = AutoConfig.from_pretrained("videoloc/seamless-basic")
|
13 |
|
|
|
8 |
import importlib.util
|
9 |
|
10 |
def load_model_and_collator():
|
11 |
+
# Load model - architecture is included in the repository
|
12 |
model = AutoModel.from_pretrained("videoloc/seamless-basic")
|
13 |
config = AutoConfig.from_pretrained("videoloc/seamless-basic")
|
14 |
|
modeling_seamless_basic.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from transformers import PreTrainedModel, PretrainedConfig
|
5 |
+
from transformers.modeling_outputs import SequenceClassifierOutput
|
6 |
+
from transformers import SeamlessM4TModel
|
7 |
+
import logging
|
8 |
+
|
9 |
+
logger = logging.getLogger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class SeamlessBasicConfig(PretrainedConfig):
|
13 |
+
"""Configuration class for SeamlessBasic model."""
|
14 |
+
|
15 |
+
model_type = "seamless_basic"
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
seamless_model_name="facebook/hf-seamless-m4t-medium",
|
20 |
+
hidden_size=1024,
|
21 |
+
dropout_prob=0.1,
|
22 |
+
**kwargs
|
23 |
+
):
|
24 |
+
super().__init__(**kwargs)
|
25 |
+
self.seamless_model_name = seamless_model_name
|
26 |
+
self.hidden_size = hidden_size
|
27 |
+
self.dropout_prob = dropout_prob
|
28 |
+
|
29 |
+
|
30 |
+
class HFSeamlessBasic(PreTrainedModel):
|
31 |
+
"""Basic SeamlessM4T model for HuggingFace Hub - processes audio and text only."""
|
32 |
+
|
33 |
+
config_class = SeamlessBasicConfig
|
34 |
+
supports_gradient_checkpointing = True
|
35 |
+
|
36 |
+
def __init__(self, config):
|
37 |
+
super().__init__(config)
|
38 |
+
self.config = config
|
39 |
+
|
40 |
+
# Load the underlying SeamlessM4T model
|
41 |
+
self.seamless_model = SeamlessM4TModel.from_pretrained(config.seamless_model_name)
|
42 |
+
self.seamless_model_speech_encoder = self.seamless_model.speech_encoder
|
43 |
+
self.seamless_model_text_encoder = self.seamless_model.text_encoder
|
44 |
+
|
45 |
+
# Freeze pre-trained models
|
46 |
+
for param in self.seamless_model_speech_encoder.parameters():
|
47 |
+
param.requires_grad = False
|
48 |
+
for param in self.seamless_model_text_encoder.parameters():
|
49 |
+
param.requires_grad = False
|
50 |
+
|
51 |
+
# Projection layers
|
52 |
+
self.audio_proj = nn.Linear(
|
53 |
+
self.seamless_model_speech_encoder.config.hidden_size,
|
54 |
+
config.hidden_size
|
55 |
+
)
|
56 |
+
self.text_proj = nn.Linear(
|
57 |
+
self.seamless_model_text_encoder.config.hidden_size,
|
58 |
+
config.hidden_size
|
59 |
+
)
|
60 |
+
|
61 |
+
# Classification head (2048 = 1024 + 1024)
|
62 |
+
self.fc = nn.Sequential(
|
63 |
+
nn.Linear(2048, 1024),
|
64 |
+
nn.ReLU(),
|
65 |
+
nn.Dropout(config.dropout_prob),
|
66 |
+
nn.Linear(1024, 512),
|
67 |
+
nn.ReLU(),
|
68 |
+
nn.Dropout(config.dropout_prob),
|
69 |
+
nn.Linear(512, 256),
|
70 |
+
nn.ReLU(),
|
71 |
+
nn.Dropout(config.dropout_prob),
|
72 |
+
nn.Linear(256, 1)
|
73 |
+
)
|
74 |
+
|
75 |
+
def forward(
|
76 |
+
self,
|
77 |
+
input_features,
|
78 |
+
input_ids,
|
79 |
+
text_attention_mask,
|
80 |
+
audio_attention_mask=None,
|
81 |
+
labels=None,
|
82 |
+
**kwargs # Accept additional features but ignore them
|
83 |
+
):
|
84 |
+
# Encode audio
|
85 |
+
audio_emb = self.seamless_model_speech_encoder(
|
86 |
+
input_features=input_features,
|
87 |
+
attention_mask=audio_attention_mask
|
88 |
+
).last_hidden_state.mean(dim=1)
|
89 |
+
audio_emb = self.audio_proj(audio_emb)
|
90 |
+
|
91 |
+
# Encode text
|
92 |
+
text_emb = self.seamless_model_text_encoder(
|
93 |
+
input_ids=input_ids,
|
94 |
+
attention_mask=text_attention_mask
|
95 |
+
).last_hidden_state.mean(dim=1)
|
96 |
+
text_emb = self.text_proj(text_emb)
|
97 |
+
|
98 |
+
# Combine features
|
99 |
+
combined = torch.cat([audio_emb, text_emb], dim=1) # (batch_size, 2048)
|
100 |
+
|
101 |
+
logits = self.fc(combined).squeeze(-1)
|
102 |
+
|
103 |
+
# Compute loss if labels are provided
|
104 |
+
loss = F.mse_loss(logits, labels) if labels is not None else None
|
105 |
+
|
106 |
+
return SequenceClassifierOutput(
|
107 |
+
loss=loss,
|
108 |
+
logits=logits,
|
109 |
+
hidden_states=None,
|
110 |
+
attentions=None
|
111 |
+
)
|