--- license: apache-2.0 base_model: openai/gpt-oss-20b library_name: transformers pipeline_tag: text-generation tags: - peft - lora - bigcodebench - gpt-oss - code - causal-lm inference: false --- # GPT-OSS-20B BigCodeBench LoRA Adapter LoRA adapter weights fine-tuned from `openai/gpt-oss-20b` on BigCodeBench split `v0.1.4` (~1.1K samples). ## Training Summary - Steps: 100 - Final train_loss: 0.7833267974853516 - Runtime (s): 3717.3139 - Samples/sec: 0.43 - Total FLOPs: 6.825417425085542e+16 ## Usage ```python from transformers import AutoModelForCausalLM, AutoTokenizer from peft import PeftModel base = 'openai/gpt-oss-20b' adapter = 'unlimitedbytes/gptoss-bigcodebench-20b-lora' model = AutoModelForCausalLM.from_pretrained(base, device_map='auto', torch_dtype='auto') model = PeftModel.from_pretrained(model, adapter) tokenizer = AutoTokenizer.from_pretrained(base) messages = [ {'role': 'system', 'content': 'You are a helpful coding assistant.'}, {'role': 'user', 'content': 'Write a Python function to add two numbers.'} ] input_ids = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors='pt').to(model.device) out = model.generate(input_ids, max_new_tokens=128) print(tokenizer.decode(out[0], skip_special_tokens=False)) ``` Merge adapter: ```python model = model.merge_and_unload() model.save_pretrained('merged-model') ``` ## Limitations - 100 training steps only; not fully converged. - Adapter only, no merged full weights. - Outputs may include control tokens. ## License Apache-2.0 (base) + dataset licenses.