Update README.md
Browse files
README.md
CHANGED
|
@@ -7,3 +7,35 @@ widget:
|
|
| 7 |
- text: "Cà phê được trồng nhiều ở khu vực Tây <mask> của Việt Nam."
|
| 8 |
example_title: "Example 2"
|
| 9 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
- text: "Cà phê được trồng nhiều ở khu vực Tây <mask> của Việt Nam."
|
| 8 |
example_title: "Example 2"
|
| 9 |
---
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# <a name="introduction"></a> CafeBERT: A Pre-Trained Language Model for Vietnamese (NAACL-2024 Findings)
|
| 13 |
+
|
| 14 |
+
The pre-trained CafeBERT model is the state-of-the-art language model for Vietnamese *(Cafe or coffee is a popular drink every morning in Vietnam)*:
|
| 15 |
+
|
| 16 |
+
CafeBERT is a large-scale multilingual language model with strong support for Vietnamese. The model is based on XLM-Roberta (the state-of-the-art multilingual language model) and is enhanced with a large Vietnamese corpus with many domains: Wikipedia, newspapers... CafeBERT has outstanding performance on the VLUE benchmark and other tasks, like: machine reading comprehension, text classification, natural language inference, part-of-speech tagging...
|
| 17 |
+
|
| 18 |
+
The general architecture and experimental results of PhoBERT can be found in our paper:
|
| 19 |
+
|
| 20 |
+
Please **CITE** our paper when CafeBERT is used to help produce published results or is incorporated into other software.
|
| 21 |
+
|
| 22 |
+
**Installation**
|
| 23 |
+
|
| 24 |
+
Install `transformers` and `SentencePiece` packages:
|
| 25 |
+
|
| 26 |
+
pip install transformers
|
| 27 |
+
pip install SentencePiece
|
| 28 |
+
|
| 29 |
+
**Example usage**
|
| 30 |
+
```python
|
| 31 |
+
from transformers import AutoModel, AutoTokenizer
|
| 32 |
+
import torch
|
| 33 |
+
|
| 34 |
+
model= AutoModel.from_pretrained('uitnlp/CafeBERT')
|
| 35 |
+
tokenizer = AutoTokenizer.from_pretrained('uitnlp/CafeBERT')
|
| 36 |
+
|
| 37 |
+
encoding = tokenizer('Cà phê được trồng nhiều ở khu vực Tây Nguyên của Việt Nam.', return_tensors='pt')
|
| 38 |
+
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
output = model(**encoding)
|
| 41 |
+
```
|