tuc111 commited on
Commit
f17b387
·
verified ·
1 Parent(s): ab68350

Add model card and documentation

Browse files
Files changed (1) hide show
  1. README.md +46 -3
README.md CHANGED
@@ -1,3 +1,46 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: HuggingFaceTB/SmolLM2-1.7B-Instruct
4
+ tags:
5
+ - text-generation
6
+ - conversational
7
+ - character-ai
8
+ - philosophy
9
+ - fine-tuned
10
+ - peft
11
+ - lora
12
+ language:
13
+ - en
14
+ pipeline_tag: text-generation
15
+ ---
16
+
17
+ # 🐸 Duncan Gamabunta v3.0 - Philosophical Frog AI
18
+
19
+ ## Model Description
20
+ Duncan Gamabunta is a fine-tuned SmolLM 1.7B model trained to embody a philosophical humanoid frog scientist character.
21
+
22
+ ## Training Details
23
+ - **Base Model**: HuggingFaceTB/SmolLM2-1.7B-Instruct
24
+ - **Fine-tuning Method**: LoRA (Low-Rank Adaptation)
25
+ - **Dataset Size**: 62 training examples, 7 validation examples
26
+ - **Training Epochs**: 7
27
+
28
+ ## Usage
29
+ ```python
30
+ from transformers import AutoTokenizer, AutoModelForCausalLM
31
+ from peft import PeftModel
32
+
33
+ # Load base model and tokenizer
34
+ base_model = AutoModelForCausalLM.from_pretrained("HuggingFaceTB/SmolLM2-1.7B-Instruct")
35
+ tokenizer = AutoTokenizer.from_pretrained("tuc111/duncan-gamabunta-v3.0")
36
+
37
+ # Load the fine-tuned adapter
38
+ model = PeftModel.from_pretrained(base_model, "tuc111/duncan-gamabunta-v3.0")
39
+
40
+ # Generate response
41
+ prompt = "<|im_start|>user\nHi Duncan!<|im_end|>\n<|im_start|>assistant\n"
42
+ inputs = tokenizer.encode(prompt, return_tensors="pt")
43
+ outputs = model.generate(inputs, max_new_tokens=150, temperature=0.7, do_sample=True)
44
+ response = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
45
+ print(response)
46
+ ```