{ "cells": [ { "cell_type": "code", "execution_count": 7, "id": "64f33f31-f533-41e8-9821-940a5d2ea343", "metadata": { "tags": [] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Inspecting file: model-00001-of-00004.safetensors\n", "Available keys (tensor names):\n", "\n", "Key: model.layers.0.input_layernorm.weight\n", " Shape: torch.Size([3584])\n", " Dtype: torch.bfloat16\n", " Size: 3584 elements\n", " First few elements: [0.275390625, 0.3046875, 0.26171875, 0.291015625, 0.29296875]\n", "\n", "Key: model.layers.0.mlp.down_proj.weight\n", " Shape: torch.Size([3584, 18944])\n", " Dtype: torch.bfloat16\n", " Size: 67895296 elements\n", " First few elements: [-0.005096435546875, 0.01385498046875, 0.0096435546875, -0.00848388671875, -0.002593994140625]\n", "\n", "Key: model.layers.0.mlp.gate_proj.weight\n", " Shape: torch.Size([18944, 3584])\n", " Dtype: torch.bfloat16\n", " Size: 67895296 elements\n", " First few elements: [0.00286865234375, -0.0201416015625, -0.0216064453125, 0.006622314453125, -0.015625]\n", "\n", "Key: model.layers.0.mlp.up_proj.weight\n", " Shape: torch.Size([18944, 3584])\n", " Dtype: torch.bfloat16\n", " Size: 67895296 elements\n", " First few elements: [0.007537841796875, -0.0111083984375, -0.0024261474609375, -0.006927490234375, -0.02587890625]\n", "\n", "Key: model.layers.0.post_attention_layernorm.weight\n", " Shape: torch.Size([3584])\n", " Dtype: torch.bfloat16\n", " Size: 3584 elements\n", " First few elements: [0.28515625, 0.33203125, 0.259765625, 0.236328125, 0.296875]\n", "\n", "Key: model.layers.0.self_attn.kv_a_proj_with_mqa.bias\n", " Shape: torch.Size([576])\n", " Dtype: torch.bfloat16\n", " Size: 576 elements\n", " First few elements: [3.953125, 0.0634765625, 1.2578125, -1.515625, 0.29296875]\n", "\n", "Key: model.layers.0.self_attn.kv_a_proj_with_mqa.weight\n", " Shape: torch.Size([576, 3584])\n", " Dtype: torch.bfloat16\n", " Size: 2064384 elements\n", " First few elements: [0.0322265625, -0.005157470703125, -0.03173828125, 0.0184326171875, -0.015625]\n", "\n", "Key: model.layers.0.self_attn.kv_b_proj.weight\n", " Shape: torch.Size([7168, 512])\n", " Dtype: torch.bfloat16\n", " Size: 3670016 elements\n", " First few elements: [-0.04931640625, -0.01904296875, 0.080078125, -0.01324462890625, 0.0179443359375]\n", "\n", "Key: model.layers.0.self_attn.o_proj.weight\n", " Shape: torch.Size([3584, 3584])\n", " Dtype: torch.bfloat16\n", " Size: 12845056 elements\n", " First few elements: [0.00323486328125, -0.030029296875, -0.0069580078125, 0.0089111328125, 0.007568359375]\n", "\n", "Key: model.layers.0.self_attn.q_proj.bias\n", " Shape: torch.Size([5376])\n", " Dtype: torch.bfloat16\n", " Size: 5376 elements\n", " First few elements: [0.5, 2.140625, -0.98046875, 1.3671875, 1.015625]\n", "\n", "Key: model.layers.0.self_attn.q_proj.weight\n", " Shape: torch.Size([5376, 3584])\n", " Dtype: torch.bfloat16\n", " Size: 19267584 elements\n", " First few elements: [-0.0003452301025390625, -0.005340576171875, 0.021484375, 0.003997802734375, -0.00274658203125]\n" ] } ], "source": [ "from safetensors import safe_open\n", "\n", "def inspect_safetensors(file_path):\n", " print(f\"Inspecting file: {file_path}\")\n", " with safe_open(file_path, framework=\"pt\", device=\"cpu\") as f:\n", " print(\"Available keys (tensor names):\")\n", " for key in f.keys():\n", " if 'model.layers.0' in key:\n", " \n", " tensor = f.get_tensor(key)\n", " print(f\"\\nKey: {key}\")\n", " print(f\" Shape: {tensor.shape}\")\n", " print(f\" Dtype: {tensor.dtype}\")\n", " print(f\" Size: {tensor.numel()} elements\")\n", " # 可选:显示前几个元素\n", " print(f\" First few elements: {tensor.flatten()[:5].tolist()}\")\n", "\n", "# 示例路径,请替换为你自己的 .safetensors 文件路径\n", "file_path = \"model-00001-of-00004.safetensors\"\n", "inspect_safetensors(file_path)" ] }, { "cell_type": "code", "execution_count": null, "id": "2a331ae6-f4ca-4d16-8bbf-36f39b9ac43e", "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "id": "8bfd7429-5d77-42ad-8e3f-9cf37b25dfc7", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "vcflash", "language": "python", "name": "vcflash" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 5 }