travis-xia commited on
Commit
27ba5c5
·
verified ·
1 Parent(s): 069b464

Add files using upload-large-folder tool

Browse files
Files changed (49) hide show
  1. .gitattributes +3 -0
  2. .ipynb_checkpoints/Untitled-checkpoint.ipynb +147 -0
  3. .ipynb_checkpoints/config-checkpoint.json +237 -0
  4. .ipynb_checkpoints/configuration_qwen2_mla-checkpoint.py +24 -0
  5. .ipynb_checkpoints/constants-checkpoint.py +12 -0
  6. .ipynb_checkpoints/conversation-checkpoint.py +592 -0
  7. .ipynb_checkpoints/mm_utils-checkpoint.py +852 -0
  8. .ipynb_checkpoints/modeling_qwen2_mla-checkpoint.py +218 -0
  9. .ipynb_checkpoints/modeling_videochat_flash-checkpoint.py +716 -0
  10. .ipynb_checkpoints/test-checkpoint.py +43 -0
  11. .ipynb_checkpoints/tokenizer-checkpoint.json +3 -0
  12. Untitled.ipynb +208 -0
  13. __pycache__/configuration_qwen2_mla.cpython-312.pyc +0 -0
  14. __pycache__/constants.cpython-310.pyc +0 -0
  15. __pycache__/constants.cpython-312.pyc +0 -0
  16. __pycache__/conversation.cpython-310.pyc +0 -0
  17. __pycache__/conversation.cpython-312.pyc +0 -0
  18. __pycache__/mm_projector_builder.cpython-310.pyc +0 -0
  19. __pycache__/mm_projector_builder.cpython-312.pyc +0 -0
  20. __pycache__/mm_utils.cpython-310.pyc +0 -0
  21. __pycache__/mm_utils.cpython-312.pyc +0 -0
  22. __pycache__/modeling_qwen2_mla.cpython-312.pyc +0 -0
  23. __pycache__/modeling_videochat_flash.cpython-310.pyc +0 -0
  24. __pycache__/modeling_videochat_flash.cpython-312.pyc +0 -0
  25. __pycache__/vision_tower_builder.cpython-310.pyc +0 -0
  26. __pycache__/vision_tower_builder.cpython-312.pyc +0 -0
  27. added_tokens.json +24 -0
  28. config.json +237 -0
  29. configuration_qwen2_mla.py +24 -0
  30. constants.py +12 -0
  31. conversation.py +592 -0
  32. generation_config.json +14 -0
  33. merges.txt +0 -0
  34. mm_projector_builder.py +165 -0
  35. mm_utils.py +852 -0
  36. model-00001-of-00004.safetensors +3 -0
  37. model-00002-of-00004.safetensors +3 -0
  38. model-00003-of-00004.safetensors +3 -0
  39. model-00004-of-00004.safetensors +3 -0
  40. model.safetensors.index.json +625 -0
  41. modeling_qwen2_mla.py +218 -0
  42. modeling_videochat_flash.py +716 -0
  43. special_tokens_map.json +31 -0
  44. test.mp4 +3 -0
  45. test.py +43 -0
  46. tokenizer.json +3 -0
  47. tokenizer_config.json +209 -0
  48. vision_tower_builder.py +632 -0
  49. vocab.json +0 -0
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ test.mp4 filter=lfs diff=lfs merge=lfs -text
37
+ .ipynb_checkpoints/tokenizer-checkpoint.json filter=lfs diff=lfs merge=lfs -text
38
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
.ipynb_checkpoints/Untitled-checkpoint.ipynb ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 7,
6
+ "id": "64f33f31-f533-41e8-9821-940a5d2ea343",
7
+ "metadata": {
8
+ "tags": []
9
+ },
10
+ "outputs": [
11
+ {
12
+ "name": "stdout",
13
+ "output_type": "stream",
14
+ "text": [
15
+ "Inspecting file: model-00001-of-00004.safetensors\n",
16
+ "Available keys (tensor names):\n",
17
+ "\n",
18
+ "Key: model.layers.0.input_layernorm.weight\n",
19
+ " Shape: torch.Size([3584])\n",
20
+ " Dtype: torch.bfloat16\n",
21
+ " Size: 3584 elements\n",
22
+ " First few elements: [0.275390625, 0.3046875, 0.26171875, 0.291015625, 0.29296875]\n",
23
+ "\n",
24
+ "Key: model.layers.0.mlp.down_proj.weight\n",
25
+ " Shape: torch.Size([3584, 18944])\n",
26
+ " Dtype: torch.bfloat16\n",
27
+ " Size: 67895296 elements\n",
28
+ " First few elements: [-0.005096435546875, 0.01385498046875, 0.0096435546875, -0.00848388671875, -0.002593994140625]\n",
29
+ "\n",
30
+ "Key: model.layers.0.mlp.gate_proj.weight\n",
31
+ " Shape: torch.Size([18944, 3584])\n",
32
+ " Dtype: torch.bfloat16\n",
33
+ " Size: 67895296 elements\n",
34
+ " First few elements: [0.00286865234375, -0.0201416015625, -0.0216064453125, 0.006622314453125, -0.015625]\n",
35
+ "\n",
36
+ "Key: model.layers.0.mlp.up_proj.weight\n",
37
+ " Shape: torch.Size([18944, 3584])\n",
38
+ " Dtype: torch.bfloat16\n",
39
+ " Size: 67895296 elements\n",
40
+ " First few elements: [0.007537841796875, -0.0111083984375, -0.0024261474609375, -0.006927490234375, -0.02587890625]\n",
41
+ "\n",
42
+ "Key: model.layers.0.post_attention_layernorm.weight\n",
43
+ " Shape: torch.Size([3584])\n",
44
+ " Dtype: torch.bfloat16\n",
45
+ " Size: 3584 elements\n",
46
+ " First few elements: [0.28515625, 0.33203125, 0.259765625, 0.236328125, 0.296875]\n",
47
+ "\n",
48
+ "Key: model.layers.0.self_attn.kv_a_proj_with_mqa.bias\n",
49
+ " Shape: torch.Size([576])\n",
50
+ " Dtype: torch.bfloat16\n",
51
+ " Size: 576 elements\n",
52
+ " First few elements: [3.953125, 0.0634765625, 1.2578125, -1.515625, 0.29296875]\n",
53
+ "\n",
54
+ "Key: model.layers.0.self_attn.kv_a_proj_with_mqa.weight\n",
55
+ " Shape: torch.Size([576, 3584])\n",
56
+ " Dtype: torch.bfloat16\n",
57
+ " Size: 2064384 elements\n",
58
+ " First few elements: [0.0322265625, -0.005157470703125, -0.03173828125, 0.0184326171875, -0.015625]\n",
59
+ "\n",
60
+ "Key: model.layers.0.self_attn.kv_b_proj.weight\n",
61
+ " Shape: torch.Size([7168, 512])\n",
62
+ " Dtype: torch.bfloat16\n",
63
+ " Size: 3670016 elements\n",
64
+ " First few elements: [-0.04931640625, -0.01904296875, 0.080078125, -0.01324462890625, 0.0179443359375]\n",
65
+ "\n",
66
+ "Key: model.layers.0.self_attn.o_proj.weight\n",
67
+ " Shape: torch.Size([3584, 3584])\n",
68
+ " Dtype: torch.bfloat16\n",
69
+ " Size: 12845056 elements\n",
70
+ " First few elements: [0.00323486328125, -0.030029296875, -0.0069580078125, 0.0089111328125, 0.007568359375]\n",
71
+ "\n",
72
+ "Key: model.layers.0.self_attn.q_proj.bias\n",
73
+ " Shape: torch.Size([5376])\n",
74
+ " Dtype: torch.bfloat16\n",
75
+ " Size: 5376 elements\n",
76
+ " First few elements: [0.5, 2.140625, -0.98046875, 1.3671875, 1.015625]\n",
77
+ "\n",
78
+ "Key: model.layers.0.self_attn.q_proj.weight\n",
79
+ " Shape: torch.Size([5376, 3584])\n",
80
+ " Dtype: torch.bfloat16\n",
81
+ " Size: 19267584 elements\n",
82
+ " First few elements: [-0.0003452301025390625, -0.005340576171875, 0.021484375, 0.003997802734375, -0.00274658203125]\n"
83
+ ]
84
+ }
85
+ ],
86
+ "source": [
87
+ "from safetensors import safe_open\n",
88
+ "\n",
89
+ "def inspect_safetensors(file_path):\n",
90
+ " print(f\"Inspecting file: {file_path}\")\n",
91
+ " with safe_open(file_path, framework=\"pt\", device=\"cpu\") as f:\n",
92
+ " print(\"Available keys (tensor names):\")\n",
93
+ " for key in f.keys():\n",
94
+ " if 'model.layers.0' in key:\n",
95
+ " \n",
96
+ " tensor = f.get_tensor(key)\n",
97
+ " print(f\"\\nKey: {key}\")\n",
98
+ " print(f\" Shape: {tensor.shape}\")\n",
99
+ " print(f\" Dtype: {tensor.dtype}\")\n",
100
+ " print(f\" Size: {tensor.numel()} elements\")\n",
101
+ " # 可选:显示前几个元素\n",
102
+ " print(f\" First few elements: {tensor.flatten()[:5].tolist()}\")\n",
103
+ "\n",
104
+ "# 示例路径,请替换为你自己的 .safetensors 文件路径\n",
105
+ "file_path = \"model-00001-of-00004.safetensors\"\n",
106
+ "inspect_safetensors(file_path)"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": null,
112
+ "id": "2a331ae6-f4ca-4d16-8bbf-36f39b9ac43e",
113
+ "metadata": {},
114
+ "outputs": [],
115
+ "source": []
116
+ },
117
+ {
118
+ "cell_type": "code",
119
+ "execution_count": null,
120
+ "id": "8bfd7429-5d77-42ad-8e3f-9cf37b25dfc7",
121
+ "metadata": {},
122
+ "outputs": [],
123
+ "source": []
124
+ }
125
+ ],
126
+ "metadata": {
127
+ "kernelspec": {
128
+ "display_name": "vcflash",
129
+ "language": "python",
130
+ "name": "vcflash"
131
+ },
132
+ "language_info": {
133
+ "codemirror_mode": {
134
+ "name": "ipython",
135
+ "version": 3
136
+ },
137
+ "file_extension": ".py",
138
+ "mimetype": "text/x-python",
139
+ "name": "python",
140
+ "nbconvert_exporter": "python",
141
+ "pygments_lexer": "ipython3",
142
+ "version": "3.10.14"
143
+ }
144
+ },
145
+ "nbformat": 4,
146
+ "nbformat_minor": 5
147
+ }
.ipynb_checkpoints/config-checkpoint.json ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "VideoChatFlashQwenForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "modeling_videochat_flash.VideoChatFlashQwenConfig",
8
+ "AutoModel": "modeling_videochat_flash.VideoChatFlashQwenForCausalLM"
9
+ },
10
+ "bos_token_id": 151643,
11
+ "dual_chunk_attention_config": {
12
+ "chunk_size": 262144,
13
+ "local_size": 8192,
14
+ "original_max_position_embeddings": 262144
15
+ },
16
+ "eos_token_id": 151645,
17
+ "frame_aspect_ratio": "square",
18
+ "frame_grid_pinpoints": null,
19
+ "head_dim": 64,
20
+ "hidden_act": "silu",
21
+ "hidden_size": 3584,
22
+ "image_aspect_ratio": "anyres_nopad",
23
+ "image_crop_resolution": null,
24
+ "image_grid_pinpoints": [
25
+ [
26
+ 224,
27
+ 224
28
+ ],
29
+ [
30
+ 224,
31
+ 448
32
+ ],
33
+ [
34
+ 224,
35
+ 672
36
+ ],
37
+ [
38
+ 224,
39
+ 896
40
+ ],
41
+ [
42
+ 224,
43
+ 1120
44
+ ],
45
+ [
46
+ 224,
47
+ 1344
48
+ ],
49
+ [
50
+ 448,
51
+ 224
52
+ ],
53
+ [
54
+ 448,
55
+ 448
56
+ ],
57
+ [
58
+ 448,
59
+ 672
60
+ ],
61
+ [
62
+ 448,
63
+ 896
64
+ ],
65
+ [
66
+ 448,
67
+ 1120
68
+ ],
69
+ [
70
+ 448,
71
+ 1344
72
+ ],
73
+ [
74
+ 672,
75
+ 224
76
+ ],
77
+ [
78
+ 672,
79
+ 448
80
+ ],
81
+ [
82
+ 672,
83
+ 672
84
+ ],
85
+ [
86
+ 672,
87
+ 896
88
+ ],
89
+ [
90
+ 672,
91
+ 1120
92
+ ],
93
+ [
94
+ 672,
95
+ 1344
96
+ ],
97
+ [
98
+ 896,
99
+ 224
100
+ ],
101
+ [
102
+ 896,
103
+ 448
104
+ ],
105
+ [
106
+ 896,
107
+ 672
108
+ ],
109
+ [
110
+ 896,
111
+ 896
112
+ ],
113
+ [
114
+ 896,
115
+ 1120
116
+ ],
117
+ [
118
+ 896,
119
+ 1344
120
+ ],
121
+ [
122
+ 1120,
123
+ 224
124
+ ],
125
+ [
126
+ 1120,
127
+ 448
128
+ ],
129
+ [
130
+ 1120,
131
+ 672
132
+ ],
133
+ [
134
+ 1120,
135
+ 896
136
+ ],
137
+ [
138
+ 1120,
139
+ 1120
140
+ ],
141
+ [
142
+ 1120,
143
+ 1344
144
+ ],
145
+ [
146
+ 1344,
147
+ 224
148
+ ],
149
+ [
150
+ 1344,
151
+ 448
152
+ ],
153
+ [
154
+ 1344,
155
+ 672
156
+ ],
157
+ [
158
+ 1344,
159
+ 896
160
+ ],
161
+ [
162
+ 1344,
163
+ 1120
164
+ ],
165
+ [
166
+ 1344,
167
+ 1344
168
+ ]
169
+ ],
170
+ "image_split_resolution": null,
171
+ "initializer_range": 0.02,
172
+ "intermediate_size": 18944,
173
+ "llm_compress_layer_list": [
174
+ 8,
175
+ 16,
176
+ 24
177
+ ],
178
+ "llm_compress_type": "attention",
179
+ "llm_image_token_ratio_list": [
180
+ 1.0,
181
+ 0.5,
182
+ 0.25,
183
+ 0.125
184
+ ],
185
+ "max_num_pixels": 14745600000,
186
+ "max_position_embeddings": 32000,
187
+ "max_window_layers": 28,
188
+ "min_slow_num_frames": 4,
189
+ "mm_close_init": false,
190
+ "mm_hidden_size": 1024,
191
+ "mm_llm_compress": false,
192
+ "mm_local_num_frames": 4,
193
+ "mm_newline_position": "nothing",
194
+ "mm_num_compress_latents": 128,
195
+ "mm_num_compress_query_type": "learnable",
196
+ "mm_patch_merge_type": "spatial_nopad",
197
+ "mm_pos_num_frames": 8,
198
+ "mm_projector_lr": null,
199
+ "mm_projector_type": "tome16_mlp_hd64",
200
+ "mm_resampler_type": null,
201
+ "mm_spatial_pool_mode": "bilinear",
202
+ "mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
203
+ "mm_use_im_patch_token": false,
204
+ "mm_use_im_start_end": false,
205
+ "mm_vision_select_feature": "patch",
206
+ "mm_vision_select_layer": -2,
207
+ "mm_vision_tower": "umt-large",
208
+ "mm_vision_tower_lr": 2e-06,
209
+ "model_type": "videochat_flash_qwen",
210
+ "num_attention_heads": 28,
211
+ "num_hidden_layers": 28,
212
+ "num_key_value_heads": 28,
213
+ "pos_skipping_range": 4096,
214
+ "rms_norm_eps": 1e-05,
215
+ "rope_scaling": null,
216
+ "rope_theta": 10000000.0,
217
+ "sliding_window": 32768,
218
+ "tie_word_embeddings": false,
219
+ "tokenizer_model_max_length": 32768,
220
+ "tokenizer_padding_side": "right",
221
+ "torch_dtype": "bfloat16",
222
+ "transformers_version": "4.51.3",
223
+ "use_cache": true,
224
+ "use_mm_proj": true,
225
+ "use_pos_skipping": false,
226
+ "use_sliding_window": false,
227
+ "vision_encode_type": "video_image",
228
+ "vision_tower_pretrained": null,
229
+ "vocab_size": 152064,
230
+ "attention_bias": true,
231
+ "qk_rope_head_dim": 64,
232
+ "qk_nope_head_dim": 128,
233
+ "v_head_dim": 128,
234
+ "q_lora_rank": null,
235
+ "kv_lora_rank": 512,
236
+ "qk_latent_layernorm": false
237
+ }
.ipynb_checkpoints/configuration_qwen2_mla-checkpoint.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
2
+
3
+ class Qwen2MLAConfig(Qwen2Config):
4
+
5
+ def __init__(
6
+ self,
7
+ *args,
8
+ kv_lora_rank=512,
9
+ q_lora_rank=None,
10
+ qk_rope_head_dim=64,
11
+ qk_nope_head_dim=128,
12
+ v_head_dim=128,
13
+ qk_latent_layernorm=True,
14
+ **kwargs
15
+ ):
16
+ super().__init__(*args, **kwargs)
17
+
18
+ self.kv_lora_rank = kv_lora_rank
19
+ self.q_lora_rank = q_lora_rank
20
+ self.qk_rope_head_dim = qk_rope_head_dim
21
+ self.qk_nope_head_dim = qk_nope_head_dim
22
+ self.qk_head_dim = qk_rope_head_dim + qk_nope_head_dim
23
+ self.v_head_dim = v_head_dim
24
+ self.qk_latent_layernorm = qk_latent_layernorm
.ipynb_checkpoints/constants-checkpoint.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
2
+ WORKER_HEART_BEAT_INTERVAL = 15
3
+
4
+ LOGDIR = "."
5
+
6
+ # Model Constants
7
+ IGNORE_INDEX = -100
8
+ IMAGE_TOKEN_INDEX = -200
9
+ DEFAULT_IMAGE_TOKEN = "<image>"
10
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
11
+ DEFAULT_IM_START_TOKEN = "<im_start>"
12
+ DEFAULT_IM_END_TOKEN = "<im_end>"
.ipynb_checkpoints/conversation-checkpoint.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import auto, Enum
3
+ from typing import List, Any, Dict, Union, Tuple
4
+ import re
5
+ import base64
6
+ from io import BytesIO
7
+ from PIL import Image
8
+ from transformers import AutoTokenizer
9
+
10
+
11
+ class SeparatorStyle(Enum):
12
+ """Different separator style."""
13
+
14
+ SINGLE = auto()
15
+ TWO = auto()
16
+ MPT = auto()
17
+ PLAIN = auto()
18
+ CHATML = auto()
19
+ LLAMA_2 = auto()
20
+ LLAMA_3 = auto()
21
+ QWEN = auto()
22
+ GEMMA = auto()
23
+
24
+
25
+ @dataclasses.dataclass
26
+ class Conversation:
27
+ """A class that keeps all conversation history."""
28
+
29
+ system: str
30
+ roles: List[str]
31
+ messages: List[List[str]]
32
+ offset: int
33
+ sep_style: SeparatorStyle = SeparatorStyle.SINGLE
34
+ sep: str = "###"
35
+ sep2: str = None
36
+ version: str = "Unknown"
37
+
38
+ tokenizer_id: str = ""
39
+ tokenizer: Any = None
40
+ # Stop criteria (the default one is EOS token)
41
+ stop_str: Union[str, List[str]] = None
42
+ # Stops generation if meeting any token in this list
43
+ stop_token_ids: List[int] = None
44
+
45
+ skip_next: bool = False
46
+
47
+ def get_prompt(self):
48
+ messages = self.messages
49
+ if len(messages) > 0 and type(messages[0][1]) is tuple:
50
+ messages = self.messages.copy()
51
+ init_role, init_msg = messages[0].copy()
52
+ init_msg = init_msg[0]
53
+ if "mmtag" in self.version:
54
+ init_msg = init_msg.replace("<image>", "").strip()
55
+ messages[0] = (init_role, init_msg)
56
+ messages.insert(0, (self.roles[0], "<Image><image></Image>"))
57
+ messages.insert(1, (self.roles[1], "Received."))
58
+ elif not init_msg.startswith("<image>"):
59
+ init_msg = init_msg.replace("<image>", "").strip()
60
+ messages[0] = (init_role, "<image>\n" + init_msg)
61
+ else:
62
+ messages[0] = (init_role, init_msg)
63
+
64
+ if self.sep_style == SeparatorStyle.SINGLE:
65
+ ret = self.system + self.sep
66
+ for role, message in messages:
67
+ if message:
68
+ if type(message) is tuple:
69
+ message, _, _ = message
70
+ ret += role + ": " + message + self.sep
71
+ else:
72
+ ret += role + ":"
73
+
74
+ elif self.sep_style == SeparatorStyle.TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = self.system + seps[0]
77
+ for i, (role, message) in enumerate(messages):
78
+ if message:
79
+ if type(message) is tuple:
80
+ message, _, _ = message
81
+ ret += role + ": " + message + seps[i % 2]
82
+ else:
83
+ ret += role + ":"
84
+
85
+ elif self.sep_style == SeparatorStyle.CHATML:
86
+ ret = "" if self.system == "" else self.system + self.sep + "\n"
87
+ for role, message in messages:
88
+ if message:
89
+ if type(message) is tuple:
90
+ message, images, _ = message
91
+ message = "<image>" * len(images) + message
92
+ ret += role + "\n" + message + self.sep + "\n"
93
+ else:
94
+ ret += role + "\n"
95
+ return ret
96
+
97
+ elif self.sep_style == SeparatorStyle.LLAMA_3:
98
+ chat_template_messages = [{"role": "system", "content": self.system}]
99
+ for role, message in messages:
100
+ if message:
101
+ if type(message) is tuple:
102
+ message, images = message
103
+ message = "<image>" * len(images) + message
104
+ chat_template_messages.append({"role": role, "content": message})
105
+
106
+ # print(chat_template_messages)
107
+ return self.tokenizer.apply_chat_template(chat_template_messages, tokenize=False, add_generation_prompt=True)
108
+ # ret = "" if self.system == "" else self.system + self.sep + "\n"
109
+ # for role, message in messages:
110
+ # if message:
111
+ # if type(message) is tuple:
112
+ # message, images = message
113
+ # message = "<image>" * len(images) + message
114
+ # ret += role + "\n" + message + self.sep + "\n"
115
+ # else:
116
+ # ret += role + "\n"
117
+ # return ret
118
+
119
+ elif self.sep_style == SeparatorStyle.MPT:
120
+ ret = self.system + self.sep
121
+ for role, message in messages:
122
+ if message:
123
+ if type(message) is tuple:
124
+ message, _, _ = message
125
+ ret += role + message + self.sep
126
+ else:
127
+ ret += role
128
+
129
+ elif self.sep_style == SeparatorStyle.GEMMA:
130
+ ret = ""
131
+ for i, (role, message) in enumerate(messages):
132
+ assert role == self.roles[i % 2], "Conversation should alternate user/assistant/user/assistant/..."
133
+ if message:
134
+ if type(message) is tuple:
135
+ message, _, _ = message
136
+ ret += role + message + self.sep
137
+ else:
138
+ ret += role
139
+
140
+ elif self.sep_style == SeparatorStyle.LLAMA_2:
141
+ wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
142
+ wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
143
+ ret = ""
144
+
145
+ for i, (role, message) in enumerate(messages):
146
+ if i == 0:
147
+ assert message, "first message should not be none"
148
+ assert role == self.roles[0], "first message should come from user"
149
+ if message:
150
+ if type(message) is tuple:
151
+ message, _, _ = message
152
+ if i == 0:
153
+ message = wrap_sys(self.system) + message
154
+ if i % 2 == 0:
155
+ message = wrap_inst(message)
156
+ ret += self.sep + message
157
+ else:
158
+ ret += " " + message + " " + self.sep2
159
+ else:
160
+ ret += ""
161
+ ret = ret.lstrip(self.sep)
162
+
163
+ elif self.sep_style == SeparatorStyle.PLAIN:
164
+ seps = [self.sep, self.sep2]
165
+ ret = self.system
166
+ for i, (role, message) in enumerate(messages):
167
+ if message:
168
+ if type(message) is tuple:
169
+ message, _, _ = message
170
+ ret += message + seps[i % 2]
171
+ else:
172
+ ret += ""
173
+ else:
174
+ raise ValueError(f"Invalid style: {self.sep_style}")
175
+
176
+ return ret
177
+
178
+ def append_message(self, role, message):
179
+ self.messages.append([role, message])
180
+
181
+ def process_image(self, image, image_process_mode, return_pil=False, image_format="PNG"):
182
+ if image_process_mode == "Pad":
183
+
184
+ def expand2square(pil_img, background_color=(122, 116, 104)):
185
+ width, height = pil_img.size
186
+ if width == height:
187
+ return pil_img
188
+ elif width > height:
189
+ result = Image.new(pil_img.mode, (width, width), background_color)
190
+ result.paste(pil_img, (0, (width - height) // 2))
191
+ return result
192
+ else:
193
+ result = Image.new(pil_img.mode, (height, height), background_color)
194
+ result.paste(pil_img, ((height - width) // 2, 0))
195
+ return result
196
+
197
+ image = expand2square(image)
198
+ elif image_process_mode in ["Default", "Crop"]:
199
+ pass
200
+ elif image_process_mode == "Resize":
201
+ image = image.resize((336, 336))
202
+ else:
203
+ raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
204
+
205
+ if type(image) is not Image.Image:
206
+ image = Image.open(image).convert("RGB")
207
+
208
+ max_hw, min_hw = max(image.size), min(image.size)
209
+ aspect_ratio = max_hw / min_hw
210
+ max_len, min_len = 672, 448
211
+ shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
212
+ longest_edge = int(shortest_edge * aspect_ratio)
213
+ W, H = image.size
214
+ if H > W:
215
+ H, W = longest_edge, shortest_edge
216
+ else:
217
+ H, W = shortest_edge, longest_edge
218
+ image = image.resize((W, H))
219
+ if return_pil:
220
+ return image
221
+ else:
222
+ buffered = BytesIO()
223
+ image.save(buffered, format=image_format)
224
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
225
+ return img_b64_str
226
+
227
+ def get_images(self, return_pil=False, return_path=False):
228
+ images = []
229
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
230
+ if i % 2 == 0:
231
+ if type(msg) is tuple:
232
+ msg, image, image_process_mode = msg
233
+ if type(image) != list:
234
+ image = [image]
235
+ for img in image:
236
+ if not return_path and self.is_image_file(img):
237
+ img = self.process_image(img, image_process_mode, return_pil=return_pil)
238
+ else:
239
+ images.append(img)
240
+ return images
241
+
242
+ def is_image_file(self, filename):
243
+ image_extensions = [".png", ".jpg", ".jpeg", ".gif", ".bmp", ".tiff", ".webp"]
244
+ return any(filename.lower().endswith(ext) for ext in image_extensions)
245
+
246
+ def is_video_file(self, filename):
247
+ video_extensions = [".mp4", ".mov", ".avi", ".mkv", ".wmv", ".flv", ".mpeg", ".mpg"]
248
+ return any(filename.lower().endswith(ext) for ext in video_extensions)
249
+
250
+ def to_gradio_chatbot(self):
251
+ ret = []
252
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
253
+ if i % 2 == 0:
254
+ if type(msg) is tuple:
255
+ msg, image, image_process_mode = msg
256
+ if type(image) != list:
257
+ image = [image]
258
+ if len(image) == 1:
259
+ msg = "<image>\n" + msg.replace("<image>", "").strip()
260
+ else:
261
+ msg = re.sub(r"(<image>)\n(?=<image>)", r"\1 ", msg)
262
+
263
+ img_str_list = []
264
+ for img in image:
265
+ if self.is_image_file(img):
266
+ img_b64_str = self.process_image(img, "Default", return_pil=False, image_format="JPEG")
267
+ img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" style="max-width: 256px; max-height: 256px; width: auto; height: auto; object-fit: contain;"/>'
268
+ img_str_list.append(img_str)
269
+ elif self.is_video_file(img):
270
+ ret.append(((img,), None))
271
+
272
+ msg = msg.strip()
273
+ img_place_holder = ""
274
+ for img_str in img_str_list:
275
+ img_place_holder += f"{img_str}\n\n"
276
+
277
+ if len(img_str_list) > 0:
278
+ msg = f"{img_place_holder}\n\n{msg}"
279
+
280
+ if len(msg) > 0:
281
+ ret.append([msg, None])
282
+ else:
283
+ ret.append([msg, None])
284
+ else:
285
+ ret[-1][-1] = msg
286
+ return ret
287
+
288
+ def copy(self):
289
+ return Conversation(system=self.system, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, version=self.version)
290
+
291
+ def dict(self):
292
+ if len(self.get_images()) > 0:
293
+ return {
294
+ "system": self.system,
295
+ "roles": self.roles,
296
+ "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
297
+ "offset": self.offset,
298
+ "sep": self.sep,
299
+ "sep2": self.sep2,
300
+ }
301
+ return {
302
+ "system": self.system,
303
+ "roles": self.roles,
304
+ "messages": self.messages,
305
+ "offset": self.offset,
306
+ "sep": self.sep,
307
+ "sep2": self.sep2,
308
+ }
309
+
310
+
311
+ conv_vicuna_v0 = Conversation(
312
+ system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.",
313
+ roles=("Human", "Assistant"),
314
+ messages=[
315
+ ["Human", "What are the key differences between renewable and non-renewable energy sources?"],
316
+ [
317
+ "Assistant",
318
+ "Renewable energy sources are those that can be replenished naturally in a relatively "
319
+ "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
320
+ "Non-renewable energy sources, on the other hand, are finite and will eventually be "
321
+ "depleted, such as coal, oil, and natural gas. Here are some key differences between "
322
+ "renewable and non-renewable energy sources:\n"
323
+ "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
324
+ "energy sources are finite and will eventually run out.\n"
325
+ "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
326
+ "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
327
+ "and other negative effects.\n"
328
+ "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
329
+ "have lower operational costs than non-renewable sources.\n"
330
+ "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
331
+ "locations than non-renewable sources.\n"
332
+ "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
333
+ "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
334
+ "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
335
+ "non-renewable sources are not, and their depletion can lead to economic and social instability.\n",
336
+ ],
337
+ ],
338
+ offset=2,
339
+ sep_style=SeparatorStyle.SINGLE,
340
+ sep="###",
341
+ )
342
+
343
+ conv_vicuna_v1 = Conversation(
344
+ system="A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.",
345
+ roles=("USER", "ASSISTANT"),
346
+ version="v1",
347
+ messages=[],
348
+ offset=0,
349
+ sep_style=SeparatorStyle.TWO,
350
+ sep=" ",
351
+ sep2="</s>",
352
+ )
353
+
354
+ conv_llama_2 = Conversation(
355
+ system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
356
+
357
+ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
358
+ roles=("USER", "ASSISTANT"),
359
+ version="llama_v2",
360
+ messages=[],
361
+ offset=0,
362
+ sep_style=SeparatorStyle.LLAMA_2,
363
+ sep="<s>",
364
+ sep2="</s>",
365
+ )
366
+
367
+ conv_llava_llama_2 = Conversation(
368
+ system="You are a helpful language and vision assistant. " "You are able to understand the visual content that the user provides, " "and assist the user with a variety of tasks using natural language.",
369
+ roles=("USER", "ASSISTANT"),
370
+ version="llama_v2",
371
+ messages=[],
372
+ offset=0,
373
+ sep_style=SeparatorStyle.LLAMA_2,
374
+ sep="<s>",
375
+ sep2="</s>",
376
+ )
377
+
378
+ # conv_llava_llama_3 = Conversation(
379
+ # system="You are a helpful language and vision assistant. " "You are able to understand the visual content that the user provides, " "and assist the user with a variety of tasks using natural language.",
380
+ # roles=("user", "assistant"),
381
+ # version="llama_v3",
382
+ # messages=[],
383
+ # offset=0,
384
+ # sep="<|eot_id|>",
385
+ # sep_style=SeparatorStyle.LLAMA_3,
386
+ # tokenizer_id="meta-llama/Meta-Llama-3-8B-Instruct",
387
+ # tokenizer=AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct"),
388
+ # stop_token_ids=[128009],
389
+ # )
390
+
391
+ conv_mistral_instruct = Conversation(
392
+ system="",
393
+ roles=("USER", "ASSISTANT"),
394
+ version="llama_v2",
395
+ messages=[],
396
+ offset=0,
397
+ sep_style=SeparatorStyle.LLAMA_2,
398
+ sep="",
399
+ sep2="</s>",
400
+ )
401
+
402
+ conv_llava_llama_2_simple = Conversation(
403
+ system="Answer the questions about the visual content that the user provides.",
404
+ roles=("USER", "ASSISTANT"),
405
+ version="llama_v2",
406
+ messages=[],
407
+ offset=0,
408
+ sep_style=SeparatorStyle.LLAMA_2,
409
+ sep="<s>",
410
+ sep2="</s>",
411
+ )
412
+
413
+ conv_llava_llama_2_mmtag = Conversation(
414
+ system="Answer the questions about the visual content that the user provides." "The visual content will be provided with the following format: <Image>visual content</Image>.",
415
+ roles=("USER", "ASSISTANT"),
416
+ version="llama_v2_mmtag",
417
+ messages=[],
418
+ offset=0,
419
+ sep_style=SeparatorStyle.LLAMA_2,
420
+ sep="<s>",
421
+ sep2="</s>",
422
+ )
423
+
424
+ conv_mpt = Conversation(
425
+ system="""<|im_start|>system
426
+ A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
427
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
428
+ version="mpt",
429
+ messages=[],
430
+ offset=0,
431
+ sep_style=SeparatorStyle.MPT,
432
+ sep="<|im_end|>",
433
+ )
434
+
435
+ conv_qwen = Conversation(
436
+ system="""<|im_start|>system
437
+ You are a helpful assistant.""",
438
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
439
+ version="qwen",
440
+ messages=[],
441
+ offset=0,
442
+ sep_style=SeparatorStyle.CHATML,
443
+ sep="<|im_end|>",
444
+ )
445
+
446
+
447
+
448
+ conv_internlm_2 = Conversation(
449
+ system="""<|im_start|>system
450
+ You are a helpful assistant.""",
451
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
452
+ version="internlm_2",
453
+ messages=[],
454
+ offset=0,
455
+ sep_style=SeparatorStyle.CHATML,
456
+ sep="<|im_end|>",
457
+ )
458
+
459
+ conv_gemma_instruct = Conversation(system="", roles=("<start_of_turn>user\n", "<start_of_turn>model\n"), version="gemma", messages=[], offset=0, sep_style=SeparatorStyle.GEMMA, sep="<end_of_turn>\n")
460
+
461
+ conv_llava_plain = Conversation(
462
+ system="",
463
+ roles=("", ""),
464
+ messages=[],
465
+ offset=0,
466
+ sep_style=SeparatorStyle.PLAIN,
467
+ sep="\n",
468
+ )
469
+
470
+ conv_llava_v0 = Conversation(
471
+ system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.",
472
+ roles=("Human", "Assistant"),
473
+ messages=[],
474
+ offset=0,
475
+ sep_style=SeparatorStyle.SINGLE,
476
+ sep="###",
477
+ )
478
+
479
+ conv_llava_v0_mmtag = Conversation(
480
+ system="A chat between a curious user and an artificial intelligence assistant. "
481
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
482
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
483
+ roles=("Human", "Assistant"),
484
+ messages=[],
485
+ offset=0,
486
+ sep_style=SeparatorStyle.SINGLE,
487
+ sep="###",
488
+ version="v0_mmtag",
489
+ )
490
+
491
+ conv_llava_v1 = Conversation(
492
+ system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.",
493
+ roles=("USER", "ASSISTANT"),
494
+ version="v1",
495
+ messages=[],
496
+ offset=0,
497
+ sep_style=SeparatorStyle.TWO,
498
+ sep=" ",
499
+ sep2="</s>",
500
+ )
501
+
502
+ conv_llava_v1_mmtag = Conversation(
503
+ system="A chat between a curious user and an artificial intelligence assistant. "
504
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
505
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
506
+ roles=("USER", "ASSISTANT"),
507
+ messages=[],
508
+ offset=0,
509
+ sep_style=SeparatorStyle.TWO,
510
+ sep=" ",
511
+ sep2="</s>",
512
+ version="v1_mmtag",
513
+ )
514
+
515
+ conv_mistral_orca = Conversation(
516
+ system="""<|im_start|>system
517
+ You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!""",
518
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
519
+ version="mpt",
520
+ messages=[],
521
+ offset=0,
522
+ sep_style=SeparatorStyle.MPT,
523
+ sep="<|im_end|>",
524
+ )
525
+
526
+ conv_mistral_zephyr = Conversation(
527
+ system="""<|system|>
528
+ You are a helpful AI assistant.""",
529
+ roles=("<|user|>\n", "<|assistant|>\n"),
530
+ version="mpt",
531
+ messages=[],
532
+ offset=0,
533
+ sep_style=SeparatorStyle.MPT,
534
+ sep="</s>",
535
+ )
536
+
537
+ conv_mistral_direct = Conversation(
538
+ system="""<|im_start|>system
539
+ Answer the questions.""",
540
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
541
+ version="mpt",
542
+ messages=[],
543
+ offset=0,
544
+ sep_style=SeparatorStyle.MPT,
545
+ sep="<|im_end|>",
546
+ )
547
+
548
+ conv_chatml_direct = Conversation(
549
+ system="""<|im_start|>system
550
+ Answer the questions.""",
551
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
552
+ version="mpt",
553
+ messages=[],
554
+ offset=0,
555
+ sep_style=SeparatorStyle.MPT,
556
+ sep="<|im_end|>",
557
+ )
558
+
559
+ default_conversation = conv_vicuna_v0
560
+ conv_templates = {
561
+ "default": conv_vicuna_v0,
562
+ "v0": conv_vicuna_v0,
563
+ "v1": conv_vicuna_v1,
564
+ "vicuna_v1": conv_vicuna_v1,
565
+ "llama_2": conv_llama_2,
566
+ "mistral_instruct": conv_mistral_instruct,
567
+ "mistral_orca": conv_mistral_orca,
568
+ "mistral_zephyr": conv_mistral_zephyr,
569
+ "mistral_direct": conv_mistral_direct,
570
+ "plain": conv_llava_plain,
571
+ "v0_plain": conv_llava_plain,
572
+ "chatml_direct": conv_chatml_direct,
573
+ "llava_v0": conv_llava_v0,
574
+ "llava_v0_mmtag": conv_llava_v0_mmtag,
575
+ "llava_v1": conv_llava_v1,
576
+ "llava_v1_mmtag": conv_llava_v1_mmtag,
577
+ "llava_llama_2": conv_llava_llama_2,
578
+ # "llava_llama_3": conv_llava_llama_3,
579
+ "llava_llama_2_simple": conv_llava_llama_2_simple,
580
+ "llava_llama_2_mmtag": conv_llava_llama_2_mmtag,
581
+ "llava_mistral_instruct": conv_mistral_instruct,
582
+ "mpt": conv_mpt,
583
+ "qwen_1_5": conv_qwen,
584
+ "qwen_2": conv_qwen,
585
+ "internlm_2": conv_internlm_2,
586
+ "gemma_instruct": conv_gemma_instruct,
587
+ }
588
+
589
+
590
+ if __name__ == "__main__":
591
+ print(default_conversation.get_prompt())
592
+ print(default_conversation)
.ipynb_checkpoints/mm_utils-checkpoint.py ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ from io import BytesIO
3
+ import base64
4
+ import math
5
+ import ast
6
+ import re
7
+ import torch
8
+ from transformers import StoppingCriteria
9
+ from .constants import IMAGE_TOKEN_INDEX
10
+ import random
11
+ import os
12
+ import io
13
+ import av
14
+ import cv2
15
+ import imageio
16
+ from decord import VideoReader
17
+ import numpy as np
18
+ from torchvision.transforms.functional import pil_to_tensor
19
+
20
+
21
+ ######################## load video ########################
22
+
23
+ def get_index(num_frames, num_segments):
24
+ seg_size = float(num_frames - 1) / num_segments
25
+ start = int(seg_size / 2)
26
+ offsets = np.array([
27
+ start + int(np.round(seg_size * idx)) for idx in range(num_segments)
28
+ ])
29
+ return offsets
30
+
31
+
32
+ def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float:
33
+ """
34
+ Converts a present time with the given time base and start_pts offset to seconds.
35
+
36
+ Returns:
37
+ time_in_seconds (float): The corresponding time in seconds.
38
+
39
+ https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64
40
+ """
41
+ if pts == math.inf:
42
+ return math.inf
43
+
44
+ return int(pts - start_pts) * time_base
45
+
46
+
47
+ def get_pyav_video_duration(video_reader):
48
+ video_stream = video_reader.streams.video[0]
49
+ video_duration = pts_to_secs(
50
+ video_stream.duration,
51
+ video_stream.time_base,
52
+ video_stream.start_time
53
+ )
54
+ return float(video_duration)
55
+
56
+
57
+
58
+ def get_frame_indices(num_frames, vlen, sample='middle', fix_start=None, input_fps=1, min_num_frames=1, max_num_frames=-1, local_num_frames=8):
59
+
60
+ if min_num_frames > vlen:
61
+ if sample == 'dynamic_fps1':
62
+ min_num_frames = (vlen // local_num_frames) * local_num_frames
63
+ else:
64
+ min_num_frames = vlen
65
+
66
+
67
+ if sample == 'dynamic_fps1':
68
+
69
+ duration = float(vlen) / input_fps
70
+ num_segments = int(duration // local_num_frames)
71
+ if num_segments == 0:
72
+ num_frames = local_num_frames
73
+ else:
74
+ num_frames = local_num_frames * num_segments
75
+
76
+ if max_num_frames > 0:
77
+ num_frames = min(num_frames, max_num_frames)
78
+ sample = "middle" # NOTE
79
+
80
+ # logger.info(f"? is OK (img), duation={duration} frames={num_frames}!!!!")
81
+
82
+ num_frames = max(min_num_frames, num_frames)
83
+
84
+ # print(f"\033[0;31m vlen={vlen}, input_fps={input_fps} num_frames={num_frames} \033[0m")
85
+
86
+ if sample in ["rand", "middle"]: # uniform sampling
87
+ acc_samples = min(num_frames, vlen)
88
+ # split the video into `acc_samples` intervals, and sample from each interval.
89
+ intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
90
+ ranges = []
91
+ for idx, interv in enumerate(intervals[:-1]):
92
+ ranges.append((interv, intervals[idx + 1] - 1))
93
+ if sample == 'rand':
94
+ try:
95
+ frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
96
+ except:
97
+ frame_indices = np.random.permutation(vlen)[:acc_samples]
98
+ frame_indices.sort()
99
+ frame_indices = list(frame_indices)
100
+ elif fix_start is not None:
101
+ frame_indices = [x[0] + fix_start for x in ranges]
102
+ elif sample == 'middle':
103
+ frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
104
+ else:
105
+ raise NotImplementedError
106
+
107
+ if len(frame_indices) < num_frames: # padded with last frame
108
+ padded_frame_indices = [frame_indices[-1]] * num_frames
109
+ padded_frame_indices[:len(frame_indices)] = frame_indices
110
+ frame_indices = padded_frame_indices
111
+ elif "fps" in sample: # fps0.5, sequentially sample frames at 0.5 fps
112
+ output_fps = float(sample[3:])
113
+ duration = float(vlen) / input_fps
114
+ delta = 1 / output_fps # gap between frames, this is also the clip length each frame represents
115
+ frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
116
+ frame_indices = np.around(frame_seconds * input_fps).astype(int)
117
+ frame_indices = [e for e in frame_indices if e < vlen]
118
+ if max_num_frames > 0 and len(frame_indices) > max_num_frames:
119
+ frame_indices = frame_indices[:max_num_frames]
120
+ # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
121
+ else:
122
+ raise ValueError(f"Not support sample type: {sample}")
123
+
124
+
125
+ return frame_indices
126
+
127
+
128
+ def read_frames_av(video_path, num_frames, sample='rand', client=None, fix_start=None, min_num_frames=1, max_num_frames=-1, clip=None, local_num_frames=8):
129
+ if clip is not None:
130
+ raise NotImplementedError("av don't support clip!!!")
131
+ if 's3://' in video_path:
132
+ video_bytes = client.get(video_path)
133
+ byteio = io.BytesIO(video_bytes)
134
+ byteio.seek(0)
135
+ reader = av.open(byteio)
136
+ else:
137
+ byteio = None
138
+ reader = av.open(video_path)
139
+ frames = [f.to_rgb().to_ndarray() for f in reader.decode(video=0)]
140
+ vlen = len(frames)
141
+ duration = get_pyav_video_duration(reader)
142
+ fps = vlen / float(duration)
143
+ frame_indices = get_frame_indices(
144
+ num_frames, vlen, sample=sample, fix_start=fix_start,
145
+ input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
146
+ )
147
+ frames = np.stack([frames[idx] for idx in frame_indices]) # (T, H, W, C), torch.uint8
148
+ # frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
149
+ if byteio != None:
150
+ byteio.close()
151
+
152
+ reader.close()
153
+
154
+ return frames, frame_indices, float(fps), duration
155
+
156
+
157
+ def read_frames_gif(
158
+ video_path, num_frames, sample='rand', fix_start=None,
159
+ min_num_frames=1, max_num_frames=-1, client=None, clip=None, local_num_frames=8
160
+ ):
161
+ if clip is not None:
162
+ raise NotImplementedError("Gif don't support clip!!!")
163
+ if 's3://' in video_path:
164
+ video_bytes = client.get(video_path)
165
+ byteio = io.BytesIO(video_bytes)
166
+ gif = imageio.get_reader(byteio)
167
+ else:
168
+ byteio = None
169
+ gif = imageio.get_reader(video_path)
170
+ vlen = len(gif)
171
+ fps = 1.
172
+ duration = vlen / fps
173
+ frame_indices = get_frame_indices(
174
+ num_frames, vlen, sample=sample, fix_start=fix_start,
175
+ min_num_frames=min_num_frames,
176
+ max_num_frames=max_num_frames, local_num_frames=local_num_frames,
177
+ input_fps=fps
178
+ )
179
+ frames = []
180
+
181
+ min_h = min_w = 100000
182
+ hw_set = set()
183
+ for index, frame in enumerate(gif):
184
+ # for index in frame_idxs:
185
+ if index in frame_indices:
186
+ frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
187
+ frame = frame.astype(np.uint8)
188
+ # # (H x W x C) to (C x H x W)
189
+ # frame = frame.permute(2, 0, 1)
190
+ frames.append(frame)
191
+ hw_set.add(frame.shape)
192
+ if frame.shape[0] < min_h:
193
+ min_h = frame.shape[0]
194
+ if frame.shape[1] < min_w:
195
+ min_w = frame.shape[1]
196
+ # print(hw_set, min_h, min_w)
197
+ if len(hw_set) > 1:
198
+ frames = [i[:min_h, :min_w] for i in frames]
199
+
200
+ frames = np.stack(frames) # .float() / 255
201
+
202
+ if byteio != None:
203
+ byteio.close()
204
+
205
+ return frames, frame_indices, float(fps), duration # for tgif
206
+
207
+
208
+
209
+ def read_frames_decord(
210
+ video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
211
+ max_num_frames=-1, client=None, clip=None, local_num_frames=8
212
+ ):
213
+
214
+ if video_path.endswith('.avi'):
215
+ return read_frames_av(video_path=video_path, num_frames=num_frames, sample=sample,
216
+ fix_start=fix_start, min_num_frames=min_num_frames, max_num_frames=max_num_frames,
217
+ client=client, clip=clip, local_num_frames=local_num_frames)
218
+ if 's3://' in video_path:
219
+ video_bytes = client.get(video_path)
220
+ if video_bytes is None or len(video_bytes) == 0:
221
+ raise ValueError(f"Can't read byte from {video_path}!")
222
+ byteio = io.BytesIO(video_bytes)
223
+ video_reader = VideoReader(byteio, num_threads=1)
224
+ else:
225
+ byteio = None
226
+ video_reader = VideoReader(video_path, num_threads=1)
227
+ vlen = len(video_reader)
228
+ fps = video_reader.get_avg_fps()
229
+ duration = vlen / float(fps)
230
+
231
+
232
+ if clip:
233
+ start, end = clip
234
+ start = max(0, start)
235
+ end = min(duration - 0.1, end)
236
+ duration = end - start
237
+ vlen = int(duration * fps)
238
+ start_index = int(start * fps)
239
+
240
+ frame_indices = get_frame_indices(
241
+ num_frames, vlen, sample=sample, fix_start=fix_start,
242
+ input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
243
+ )
244
+ if clip:
245
+ frame_indices = [f + start_index for f in frame_indices]
246
+
247
+ # print(fps, frame_indices)
248
+ frames = video_reader.get_batch(frame_indices).asnumpy() # (T, H, W, C), torch.uint8
249
+ # https://github.com/dmlc/decord/issues/208
250
+ video_reader.seek(0)
251
+
252
+ if byteio != None:
253
+ byteio.close()
254
+ # frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
255
+ return frames, frame_indices, float(fps), duration
256
+
257
+
258
+
259
+ def read_frames_img(
260
+ video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
261
+ max_num_frames=-1, client=None, clip=None, local_num_frames=8
262
+ ):
263
+ def extract_frame_number(filename):
264
+ # Extract the numeric part from the filename using regular expressions
265
+ if filename.endswith('.jpg'):
266
+ match = re.search(r'_(\d+).jpg$', filename)
267
+ elif filename.endswith('.jpeg'):
268
+ match = re.search(r'_(\d+).jpeg$', filename)
269
+ elif filename.endswith('.png'):
270
+ match = re.search(r'_(\d+).png$', filename)
271
+ else:
272
+ raise NotImplementedError(f"Wrong filename: {filename}")
273
+
274
+ return int(match.group(1)) if match else -1
275
+
276
+
277
+ def sort_frames(frame_paths):
278
+ # Extract filenames from each path and sort by their numeric part
279
+ return sorted(frame_paths, key=lambda x: extract_frame_number(os.path.basename(x)))
280
+
281
+ # img_list=[]
282
+
283
+ if "s3://" in video_path:
284
+ img_list = sort_frames(client.list(video_path))
285
+ else:
286
+ img_list = sort_frames(list(os.listdir(video_path)))
287
+
288
+
289
+ if 'tvqa' in video_path.lower():
290
+ fps = 3.0
291
+ else:
292
+ fps = 1.0
293
+
294
+ if clip is not None:
295
+ start = float(clip[0])
296
+ end = float(clip[1])
297
+ start = max(0, start)
298
+ end = min(len(img_list) / fps, end)
299
+ vlen = (end - start) * fps
300
+ else:
301
+ vlen = len(img_list)
302
+
303
+ duration = vlen / fps
304
+
305
+ if min_num_frames > vlen:
306
+ if sample == 'dynamic_fps1':
307
+ min_num_frames = (vlen // local_num_frames) * local_num_frames
308
+ else:
309
+ min_num_frames = vlen
310
+
311
+ if sample == 'dynamic_fps1':
312
+ num_segments = int(duration // local_num_frames)
313
+ if num_segments == 0:
314
+ num_frames = local_num_frames
315
+ else:
316
+ num_frames = local_num_frames * num_segments
317
+ num_frames = min(num_frames, max_num_frames)
318
+ num_frames = max(min_num_frames, num_frames)
319
+
320
+ num_frames = int(num_frames)
321
+ if clip is not None:
322
+ def _get_index_by_time(start_sec, end_sec, num_segments=8, fps=1., max_frame=9999):
323
+ start_idx = max(1, round(start_sec * fps))
324
+ end_idx = min(round(end_sec * fps), max_frame)
325
+ seg_size = float(end_idx - start_idx) / (num_segments - 1)
326
+ offsets = np.array([start_idx + int(np.round(seg_size * idx)) for idx in range(num_segments)])
327
+ return offsets
328
+
329
+ frame_indices = _get_index_by_time(float(clip[0]), float(clip[1]), num_segments=num_frames, fps=fps, max_frame=len(img_list)-1)
330
+ else:
331
+ frame_indices = get_frame_indices(
332
+ num_frames, vlen, sample=sample, fix_start=fix_start,
333
+ min_num_frames=min_num_frames,
334
+ max_num_frames=max_num_frames, local_num_frames=local_num_frames
335
+ )
336
+
337
+ imgs = []
338
+ for idx in frame_indices:
339
+ frame_fname = os.path.join(video_path, img_list[idx])
340
+ if "s3://" in video_path:
341
+ img_bytes = client.get(frame_fname)
342
+ else:
343
+ with open(frame_fname, 'rb') as f:
344
+ img_bytes = f.read()
345
+ img_np = np.frombuffer(img_bytes, np.uint8)
346
+ img = cv2.imdecode(img_np, cv2.IMREAD_COLOR)
347
+ cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
348
+ imgs.append(img)
349
+
350
+ frames = np.array(imgs, dtype=np.uint8)
351
+
352
+
353
+ return frames, frame_indices, fps, duration
354
+
355
+
356
+
357
+ VIDEO_READER_FUNCS = {
358
+ 'av': read_frames_av,
359
+ 'decord': read_frames_decord,
360
+ 'gif': read_frames_gif,
361
+ 'img': read_frames_img,
362
+ 'frame': read_frames_img
363
+ }
364
+
365
+
366
+
367
+ def load_video(video_path, max_num_frames=512, media_dict=None): #, media_dict):
368
+
369
+ if media_dict is None:
370
+ media_dict = {'video_read_type': 'decord'}
371
+
372
+ if type(video_path) != str:
373
+ assert len(video_path) == 1, video_path
374
+ video_path = video_path[0]
375
+
376
+ if 'start' in media_dict:
377
+ clip = [media_dict['start'], media_dict['end']]
378
+ else:
379
+ clip = None
380
+
381
+
382
+ client = None
383
+
384
+ frames, frame_indices, fps, duration = VIDEO_READER_FUNCS[media_dict['video_read_type']](video_path=video_path, num_frames=max_num_frames, sample='dynamic_fps1', fix_start=None, min_num_frames=64, max_num_frames=max_num_frames, client=client, clip=clip, local_num_frames=8)
385
+
386
+ sec = [str(round(f / fps, 1)) for f in frame_indices]
387
+
388
+ msg = f"\nThe video lasts for {duration:.2f} seconds, and {len(sec)} frames are uniformly sampled from it. "
389
+
390
+ return frames, msg
391
+
392
+
393
+ ######################## load video ########################
394
+
395
+
396
+ def resize_and_center_crop(image, shortest_edge_length):
397
+ # Calculate new dimensions and resize
398
+ aspect_ratio = float(image.width) / float(image.height)
399
+ if aspect_ratio > 1:
400
+ new_width = int(shortest_edge_length * aspect_ratio)
401
+ new_height = shortest_edge_length
402
+ else:
403
+ new_width = shortest_edge_length
404
+ new_height = int(shortest_edge_length / aspect_ratio)
405
+ resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
406
+
407
+ # Calculate the position and perform the center crop
408
+ left = (new_width - shortest_edge_length) / 2
409
+ top = (new_height - shortest_edge_length) / 2
410
+ right = (new_width + shortest_edge_length) / 2
411
+ bottom = (new_height + shortest_edge_length) / 2
412
+ cropped_image = resized_image.crop((left, top, right, bottom))
413
+
414
+ return cropped_image
415
+
416
+
417
+ def auto_pad_images(image, grid_params):
418
+ assert isinstance(image, Image.Image), "Input should be a Pillow Image"
419
+ assert len(grid_params) > 0, "Grid parameters should not be empty"
420
+
421
+ # Step 1: Calculate and find the closest aspect ratio
422
+ input_width, input_height = image.size
423
+ input_aspect_ratio = input_width / input_height
424
+ candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params]
425
+ closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0]))
426
+
427
+ candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3]
428
+
429
+ target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1))
430
+
431
+ resize_width, resize_height = target_resolution
432
+ if input_width > input_height:
433
+ resize_height = int(resize_width / input_aspect_ratio)
434
+ else:
435
+ resize_width = int(resize_height * input_aspect_ratio)
436
+ resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS)
437
+
438
+ # Step 5: Pad the resized image if necessary to match the target resolution
439
+ pad_width = target_resolution[0] - resize_width
440
+ pad_height = target_resolution[1] - resize_height
441
+ padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0))
442
+ padded_image.paste(resized_image, (pad_width // 2, pad_height // 2))
443
+
444
+ return padded_image
445
+
446
+
447
+ def extract_patches(image, patch_size, overlap_ratio):
448
+ assert isinstance(image, Image.Image), "Input should be a Pillow Image"
449
+ assert patch_size > 0, "Patch size should be greater than 0"
450
+ assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1"
451
+
452
+ W, H = image.size
453
+ patches = []
454
+
455
+ stride = int(patch_size * (1 - overlap_ratio))
456
+
457
+ num_patches_y = (H - patch_size) // stride + 1
458
+ num_patches_x = (W - patch_size) // stride + 1
459
+
460
+ y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2
461
+ x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2
462
+
463
+ for y in range(y_start, y_start + num_patches_y * stride, stride):
464
+ for x in range(x_start, x_start + num_patches_x * stride, stride):
465
+ patch = image.crop((x, y, x + patch_size, y + patch_size))
466
+ patches.append(patch)
467
+
468
+ return patches
469
+
470
+
471
+ def process_highres_image_crop_split(image, data_args, processor=None):
472
+ crop_resolution = data_args.image_crop_resolution
473
+ split_resolution = data_args.image_split_resolution
474
+ if processor is None:
475
+ processor = data_args.image_processor
476
+ image_crop = resize_and_center_crop(image, crop_resolution)
477
+ image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0)
478
+ image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
479
+ return torch.stack(image_patches, dim=0)
480
+
481
+
482
+ def process_highres_image(image, processor, grid_pinpoints):
483
+ grid_params = [int(x) for x in grid_pinpoints.split(",")]
484
+ width_height = max(image.size)
485
+ fit_grid_params = [x for x in grid_params if x >= width_height]
486
+ if len(fit_grid_params) == 0:
487
+ select_size = max(grid_params)
488
+ else:
489
+ select_size = min(fit_grid_params)
490
+ # FIXME: always select the 448
491
+ select_size = max(grid_params)
492
+ image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
493
+
494
+ # FIXME: this seems to be a bug that it always resizes instead of padding
495
+ image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"]))
496
+ image_padded = image_padded.resize((select_size, select_size))
497
+ image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0)
498
+ image_patches = [image_original_resize] + image_patches
499
+ image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
500
+ return torch.stack(image_patches, dim=0)
501
+
502
+
503
+ def select_best_resolution(original_size, possible_resolutions, max_resolutions, patch_size):
504
+ """
505
+ Selects the best resolution from a list of possible resolutions based on the original size.
506
+
507
+ Args:
508
+ original_size (tuple): The original size of the image in the format (width, height).
509
+ possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
510
+
511
+ Returns:
512
+ tuple: The best fit resolution in the format (width, height).
513
+ """
514
+ original_width, original_height = original_size
515
+ best_fit = None
516
+ max_effective_resolution = 0
517
+ min_wasted_resolution = float("inf")
518
+
519
+ for width, height in possible_resolutions:
520
+ if max_resolutions != None and (width * height != patch_size * patch_size):
521
+ if (width * height+patch_size*patch_size) > max_resolutions: # NOTE 要算一个global
522
+ continue
523
+ # Calculate the downscaled size to keep the aspect ratio
524
+ scale = min(width / original_width, height / original_height)
525
+ downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
526
+
527
+ # Calculate effective and wasted resolutions
528
+ effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
529
+ wasted_resolution = (width * height) - effective_resolution
530
+
531
+ if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
532
+ max_effective_resolution = effective_resolution
533
+ min_wasted_resolution = wasted_resolution
534
+ best_fit = (width, height)
535
+
536
+ # print(f"original_size={original_size}, possible_resolutions={possible_resolutions}, max_resolutions={max_resolutions}, best_fit={best_fit}")
537
+ assert best_fit is not None, f"Can't find suitable fit in {possible_resolutions} at max:{max_resolutions}"
538
+ return best_fit
539
+
540
+
541
+ def resize_and_pad_image(image, target_resolution):
542
+ """
543
+ Resize and pad an image to a target resolution while maintaining aspect ratio.
544
+
545
+ Args:
546
+ image (PIL.Image.Image): The input image.
547
+ target_resolution (tuple): The target resolution (width, height) of the image.
548
+
549
+ Returns:
550
+ PIL.Image.Image: The resized and padded image.
551
+ """
552
+ original_width, original_height = image.size
553
+ target_width, target_height = target_resolution
554
+
555
+ # Determine which dimension (width or height) to fill
556
+ scale_w = target_width / original_width
557
+ scale_h = target_height / original_height
558
+
559
+ if scale_w < scale_h:
560
+ # Width will be filled completely
561
+ new_width = target_width
562
+ new_height = min(math.ceil(original_height * scale_w), target_height)
563
+ else:
564
+ # Height will be filled completely
565
+ new_height = target_height
566
+ new_width = min(math.ceil(original_width * scale_h), target_width)
567
+
568
+ # Resize the image
569
+ resized_image = image.resize((new_width, new_height))
570
+
571
+ # Create a new image with the target size and paste the resized image onto it
572
+ new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
573
+ paste_x = (target_width - new_width) // 2
574
+ paste_y = (target_height - new_height) // 2
575
+ new_image.paste(resized_image, (paste_x, paste_y))
576
+
577
+ return new_image
578
+
579
+
580
+ def divide_to_patches(image, patch_size):
581
+ """
582
+ Divides an image into patches of a specified size.
583
+
584
+ Args:
585
+ image (PIL.Image.Image): The input image.
586
+ patch_size (int): The size of each patch.
587
+
588
+ Returns:
589
+ list: A list of PIL.Image.Image objects representing the patches.
590
+ """
591
+ patches = []
592
+ width, height = image.size
593
+ for i in range(0, height, patch_size):
594
+ for j in range(0, width, patch_size):
595
+ box = (j, i, j + patch_size, i + patch_size)
596
+ patch = image.crop(box)
597
+ patches.append(patch)
598
+
599
+ return patches
600
+
601
+
602
+ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size, max_resolutions=None):
603
+ """
604
+ Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
605
+
606
+ Args:
607
+ image_size (tuple): The size of the input image in the format (width, height).
608
+ grid_pinpoints (str): A string representation of a list of possible resolutions.
609
+ patch_size (int): The size of each image patch.
610
+
611
+ Returns:
612
+ tuple: The shape of the image patch grid in the format (width, height).
613
+ """
614
+ if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
615
+ assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
616
+ # Use regex to extract the range from the input string
617
+ matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
618
+ range_start = tuple(map(int, matches[0]))
619
+ range_end = tuple(map(int, matches[-1]))
620
+ # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
621
+ grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
622
+ # Multiply all elements by patch_size
623
+ grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
624
+ if type(grid_pinpoints) is list:
625
+ possible_resolutions = grid_pinpoints
626
+ else:
627
+ possible_resolutions = ast.literal_eval(grid_pinpoints)
628
+ width, height = select_best_resolution(image_size, possible_resolutions, max_resolutions=max_resolutions, patch_size=patch_size)
629
+
630
+ # print("get width/patch size", width, patch_size, flush=True)
631
+
632
+ return width // patch_size, height // patch_size
633
+
634
+
635
+ def process_anyres_image(image, processor, grid_pinpoints):
636
+ """
637
+ Process an image with variable resolutions.
638
+
639
+ Args:
640
+ image (PIL.Image.Image): The input image to be processed.
641
+ processor: The image processor object.
642
+ grid_pinpoints (str): A string representation of a list of possible resolutions.
643
+
644
+ Returns:
645
+ torch.Tensor: A tensor containing the processed image patches.
646
+ """
647
+ raise NotImplementedError
648
+ # Convert grid_pinpoints from string to list
649
+ if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
650
+ try:
651
+ patch_size = processor.size[0]
652
+ except Exception as e:
653
+ patch_size = processor.size["shortest_edge"]
654
+ assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
655
+ # Use regex to extract the range from the input string
656
+ matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
657
+ range_start = tuple(map(int, matches[0]))
658
+ range_end = tuple(map(int, matches[-1]))
659
+ # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
660
+ grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
661
+ # Multiply all elements by patch_size
662
+ grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
663
+
664
+ if type(grid_pinpoints) is list:
665
+ possible_resolutions = grid_pinpoints
666
+ else:
667
+ possible_resolutions = ast.literal_eval(grid_pinpoints)
668
+ best_resolution = select_best_resolution(image.size, possible_resolutions)
669
+ image_padded = resize_and_pad_image(image, best_resolution)
670
+
671
+ patches = divide_to_patches(image_padded, processor.crop_size["height"])
672
+
673
+ # FIXME: this seems to be a bug that it resizes instead of pad.
674
+ # but to keep it consistent with previous, i will keep it as it is
675
+ # TODO: uncomment below to ablate with the padding
676
+ if isinstance(processor.size, dict):
677
+ shortest_edge = processor.size["shortest_edge"]
678
+ else:
679
+ shortest_edge = min(processor.size)
680
+ image_original_resize = image.resize((shortest_edge, shortest_edge))
681
+ # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
682
+ # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
683
+
684
+ image_patches = [image_original_resize] + patches
685
+ image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
686
+
687
+ # print("image.size", image.size, "len(image_patches):", len(image_patches), "patch_size:", image_patches[0].shape)
688
+ return torch.stack(image_patches, dim=0)
689
+
690
+ def process_anyres_image_nopad(image, processor, grid_pinpoints):
691
+ """
692
+ Process an image with variable resolutions.
693
+
694
+ Args:
695
+ image (PIL.Image.Image): The input image to be processed.
696
+ processor: The image processor object.
697
+ grid_pinpoints (str): A string representation of a list of possible resolutions.
698
+
699
+ Returns:
700
+ torch.Tensor: A tensor containing the processed image patches.
701
+ """
702
+ # Convert grid_pinpoints from string to list
703
+ try:
704
+ patch_size = processor.size[0]
705
+ except Exception as e:
706
+ patch_size = processor.size["shortest_edge"]
707
+
708
+ assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
709
+
710
+ if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
711
+
712
+ # Use regex to extract the range from the input string
713
+ matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
714
+ range_start = tuple(map(int, matches[0]))
715
+ range_end = tuple(map(int, matches[-1]))
716
+ # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
717
+ grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
718
+ # Multiply all elements by patch_size
719
+ grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
720
+
721
+ if type(grid_pinpoints) is list:
722
+ possible_resolutions = grid_pinpoints
723
+ else:
724
+ possible_resolutions = ast.literal_eval(grid_pinpoints)
725
+ best_resolution = select_best_resolution(image.size, possible_resolutions, max_resolutions=None, patch_size=patch_size) # 目前图像无限制
726
+ # image_padded = resize_and_pad_image(image, best_resolution)
727
+
728
+ patches = divide_to_patches(image.resize(best_resolution), patch_size)
729
+
730
+ # FIXME: this seems to be a bug that it resizes instead of pad.
731
+ # but to keep it consistent with previous, i will keep it as it is
732
+ # TODO: uncomment below to ablate with the padding
733
+ if isinstance(processor.size, dict):
734
+ shortest_edge = processor.size["shortest_edge"]
735
+ else:
736
+ shortest_edge = min(processor.size)
737
+ image_original_resize = image.resize((shortest_edge, shortest_edge))
738
+ # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
739
+ # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
740
+
741
+ image_patches = [image_original_resize] + patches
742
+ image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
743
+
744
+ # raise ValueError(f"image.size: {image.size} len(image_patches): {len(image_patches)}, patch_size:, {image_patches[0].shape}, possible_resolutions:, {possible_resolutions}, best: {best_resolution}")
745
+ return torch.stack(image_patches, dim=0)
746
+
747
+
748
+ def load_image_from_base64(image):
749
+ return Image.open(BytesIO(base64.b64decode(image)))
750
+
751
+
752
+ def expand2square(pil_img, background_color):
753
+ width, height = pil_img.size
754
+ if width == height:
755
+ return pil_img
756
+ elif width > height:
757
+ result = Image.new(pil_img.mode, (width, width), background_color)
758
+ result.paste(pil_img, (0, (width - height) // 2))
759
+ return result
760
+ else:
761
+ result = Image.new(pil_img.mode, (height, height), background_color)
762
+ result.paste(pil_img, ((height - width) // 2, 0))
763
+ return result
764
+
765
+
766
+ def process_images(images, image_processor, model_cfg):
767
+ image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
768
+ new_images = []
769
+ if image_aspect_ratio == "highres":
770
+ raise NotImplementedError
771
+ for image in images:
772
+ image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints)
773
+ new_images.append(image)
774
+ elif "anyres" in image_aspect_ratio:
775
+ for image in images:
776
+ if "nopad" in image_aspect_ratio:
777
+ image = process_anyres_image_nopad(image, image_processor, model_cfg.image_grid_pinpoints)
778
+ else:
779
+ image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
780
+ new_images.append(image)
781
+ elif image_aspect_ratio == "crop_split":
782
+ raise NotImplementedError
783
+ for image in images:
784
+ image = process_highres_image_crop_split(image, model_cfg, image_processor)
785
+ new_images.append(image)
786
+ elif image_aspect_ratio == "pad":
787
+ for image in images:
788
+ image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean))
789
+ image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
790
+ new_images.append(image)
791
+ else:
792
+ return image_processor.preprocess(images, return_tensors="pt")["pixel_values"]
793
+ if all(x.shape == new_images[0].shape for x in new_images):
794
+ new_images = torch.stack(new_images, dim=0)
795
+ return new_images
796
+
797
+
798
+ def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
799
+ prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
800
+
801
+ def insert_separator(X, sep):
802
+ return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
803
+
804
+ input_ids = []
805
+ offset = 0
806
+ if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
807
+ offset = 1
808
+ input_ids.append(prompt_chunks[0][0])
809
+
810
+ for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
811
+ input_ids.extend(x[offset:])
812
+
813
+ if return_tensors is not None:
814
+ if return_tensors == "pt":
815
+ return torch.tensor(input_ids, dtype=torch.long)
816
+ raise ValueError(f"Unsupported tensor type: {return_tensors}")
817
+ return input_ids
818
+
819
+
820
+ def get_model_name_from_path(model_path):
821
+ model_path = model_path.strip("/")
822
+ model_paths = model_path.split("/")
823
+ if model_paths[-1].startswith("checkpoint-"):
824
+ return model_paths[-2] + "_" + model_paths[-1]
825
+ else:
826
+ return model_paths[-1]
827
+
828
+
829
+ class KeywordsStoppingCriteria(StoppingCriteria):
830
+ def __init__(self, keywords, tokenizer, input_ids):
831
+ self.keywords = keywords
832
+ self.keyword_ids = []
833
+ for keyword in keywords:
834
+ cur_keyword_ids = tokenizer(keyword).input_ids
835
+ if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
836
+ cur_keyword_ids = cur_keyword_ids[1:]
837
+ self.keyword_ids.append(torch.tensor(cur_keyword_ids))
838
+ self.tokenizer = tokenizer
839
+ self.start_len = input_ids.shape[1]
840
+
841
+ def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
842
+ assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
843
+ offset = min(output_ids.shape[1] - self.start_len, 3)
844
+ self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
845
+ for keyword_id in self.keyword_ids:
846
+ if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
847
+ return True
848
+ outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
849
+ for keyword in self.keywords:
850
+ if keyword in outputs:
851
+ return True
852
+ return False
.ipynb_checkpoints/modeling_qwen2_mla-checkpoint.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ from torch import nn
5
+ import torch.nn.functional as F
6
+ from transformers.cache_utils import Cache
7
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
8
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
9
+ from transformers.processing_utils import Unpack
10
+
11
+ from transformers.models.qwen2.modeling_qwen2 import (
12
+ Qwen2Model,
13
+ Qwen2DecoderLayer,
14
+ Qwen2PreTrainedModel,
15
+ Qwen2ForCausalLM
16
+ )
17
+ from .configuration_qwen2_mla import Qwen2MLAConfig
18
+
19
+ from transformers.models.gemma2.modeling_gemma2 import (
20
+ eager_attention_forward, # for supporting softcap
21
+ logger
22
+ )
23
+ from transformers.models.deepseek_v3.modeling_deepseek_v3 import (
24
+ apply_rotary_pos_emb_interleave,
25
+ DeepseekV3RMSNorm
26
+ )
27
+
28
+
29
+ class MLAAttention(nn.Module):
30
+ """
31
+ Modified from `transformers.models.llama.modeling_deepseek_v3.DeepseekV3Attention`
32
+ add support for attention bias and softcapping
33
+ """
34
+ def __init__(self, config, layer_idx: int):
35
+
36
+ super().__init__()
37
+ self.config = config
38
+ self.layer_idx = layer_idx
39
+
40
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
41
+ self.attention_dropout = config.attention_dropout
42
+ self.num_heads = config.num_attention_heads
43
+ self.rope_theta = config.rope_theta
44
+ self.q_lora_rank = config.q_lora_rank
45
+ self.kv_lora_rank = config.kv_lora_rank
46
+ self.qk_rope_head_dim = config.qk_rope_head_dim
47
+ self.qk_nope_head_dim = config.qk_nope_head_dim
48
+ self.v_head_dim = config.v_head_dim
49
+ self.qk_head_dim = config.qk_head_dim
50
+
51
+ self.qk_latent_layernorm = getattr(config, "qk_latent_layernorm", True)
52
+
53
+ self.is_causal = True
54
+ if self.q_lora_rank is None:
55
+ self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=config.attention_bias)
56
+ else:
57
+ self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=False)
58
+ if self.qk_latent_layernorm:
59
+ self.q_a_layernorm = DeepseekV3RMSNorm(self.q_lora_rank)
60
+ self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=config.attention_bias)
61
+
62
+ self.kv_a_proj_with_mqa = nn.Linear(
63
+ config.hidden_size,
64
+ self.kv_lora_rank + self.qk_rope_head_dim,
65
+ bias=config.attention_bias,
66
+ )
67
+ if self.qk_latent_layernorm:
68
+ self.kv_a_layernorm = DeepseekV3RMSNorm(self.kv_lora_rank)
69
+ self.kv_b_proj = nn.Linear(
70
+ self.kv_lora_rank,
71
+ self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
72
+ bias=False,
73
+ )
74
+
75
+ self.o_proj = nn.Linear(
76
+ self.num_heads * self.v_head_dim,
77
+ config.hidden_size,
78
+ bias=False,
79
+ )
80
+
81
+ self.scaling = self.qk_head_dim**-0.5
82
+
83
+ def forward(
84
+ self,
85
+ hidden_states: torch.Tensor,
86
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
87
+ attention_mask: Optional[torch.Tensor],
88
+ past_key_value: Optional[Cache] = None,
89
+ cache_position: Optional[torch.LongTensor] = None,
90
+ **kwargs: Unpack[FlashAttentionKwargs],
91
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
92
+ batch_size, seq_length = hidden_states.shape[:-1]
93
+ query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
94
+ key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
95
+
96
+ if self.q_lora_rank is None:
97
+ q_states = self.q_proj(hidden_states)
98
+ elif self.qk_latent_layernorm:
99
+ q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
100
+ else:
101
+ q_states = self.q_b_proj(self.q_a_proj(hidden_states))
102
+ q_states = q_states.view(query_shape).transpose(1, 2)
103
+ q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
104
+
105
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
106
+ k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
107
+
108
+ if self.qk_latent_layernorm:
109
+ k_pass = self.kv_b_proj(self.kv_a_layernorm(k_pass)).view(key_shape).transpose(1, 2)
110
+ else:
111
+ k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2)
112
+ k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
113
+
114
+ k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
115
+
116
+ cos, sin = position_embeddings
117
+ q_rot, k_rot = apply_rotary_pos_emb_interleave(q_rot, k_rot, cos, sin)
118
+ k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
119
+
120
+ query_states = torch.cat((q_pass, q_rot), dim=-1)
121
+ key_states = torch.cat((k_pass, k_rot), dim=-1)
122
+
123
+ if past_key_value is not None:
124
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
125
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
126
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
127
+
128
+ if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
129
+ value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
130
+
131
+ attention_interface = eager_attention_forward
132
+ if self.config._attn_implementation != "eager":
133
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
134
+ logger.warning_once(
135
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
136
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
137
+ )
138
+ else:
139
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
140
+
141
+ attn_output, attn_weights = attention_interface(
142
+ self,
143
+ query_states,
144
+ key_states,
145
+ value_states,
146
+ attention_mask,
147
+ dropout=0.0 if not self.training else self.attention_dropout,
148
+ scaling=self.scaling,
149
+ softcap=getattr(self.config, "attn_logit_softcapping", None),
150
+ **kwargs,
151
+ )
152
+ if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
153
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
154
+ attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
155
+ attn_output = self.o_proj(attn_output)
156
+ return attn_output, attn_weights
157
+
158
+
159
+
160
+ class Qwen2MLADecoderLayer(Qwen2DecoderLayer):
161
+ """
162
+ Qwen2 decoder layer with MLA (Multi-Head Latent Attention) instead of standard attention.
163
+ This class inherits from Qwen2DecoderLayer and only replaces the self_attn component.
164
+ """
165
+
166
+ def __init__(self, config: Qwen2MLAConfig, layer_idx: int):
167
+ super().__init__(config, layer_idx)
168
+ # Replace the standard Qwen2 attention with MLA attention
169
+ self.self_attn = MLAAttention(config, layer_idx)
170
+
171
+
172
+ class Qwen2MLAPreTrainedModel(Qwen2PreTrainedModel):
173
+ """
174
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
175
+ models for Qwen2 with MLA attention.
176
+ """
177
+
178
+ config_class = Qwen2MLAConfig
179
+ _no_split_modules = ["Qwen2MLADecoderLayer"]
180
+
181
+
182
+ class Qwen2MLAModel(Qwen2MLAPreTrainedModel, Qwen2Model):
183
+ """
184
+ The Qwen2 model with MLA attention layers.
185
+
186
+ This model inherits from both Qwen2MLAPreTrainedModel and Qwen2Model,
187
+ replacing the standard Qwen2 decoder layers with MLA-enabled ones.
188
+ """
189
+
190
+ def __init__(self, config: Qwen2MLAConfig):
191
+ super().__init__(config)
192
+
193
+ # Replace the layers with MLA-enabled decoder layers
194
+ self.layers = nn.ModuleList(
195
+ [Qwen2MLADecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
196
+ )
197
+
198
+
199
+ class Qwen2MLAForCausalLM(Qwen2MLAPreTrainedModel, Qwen2ForCausalLM):
200
+ """
201
+ The Qwen2 model with MLA attention for causal language modeling.
202
+
203
+ This model can be used for text generation tasks, providing the same
204
+ interface as Qwen2ForCausalLM but with MLA attention mechanism.
205
+ """
206
+
207
+ def __init__(self, config: Qwen2MLAConfig):
208
+ super().__init__(config)
209
+ # Replace the base model with the MLA version
210
+ self.model = Qwen2MLAModel(config)
211
+
212
+
213
+ # Export the main classes for external use
214
+ __all__ = [
215
+ "Qwen2MLAForCausalLM",
216
+ "Qwen2MLAModel",
217
+ "Qwen2MLAPreTrainedModel",
218
+ ]
.ipynb_checkpoints/modeling_videochat_flash-checkpoint.py ADDED
@@ -0,0 +1,716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from abc import ABC, abstractmethod
16
+ import re
17
+ import torch
18
+ import torch.nn as nn
19
+ import random
20
+ from typing import List, Optional, Tuple, Union, Dict
21
+
22
+ from transformers import AutoConfig, AutoModelForCausalLM
23
+ from transformers.modeling_outputs import CausalLMOutputWithPast
24
+ from transformers.generation.utils import GenerateOutput
25
+
26
+ from .vision_tower_builder import build_vision_tower
27
+ from .mm_projector_builder import build_vision_projector
28
+
29
+ from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_TOKEN
30
+ from .conversation import conv_templates, SeparatorStyle
31
+ from .mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, get_anyres_image_grid_shape, load_video
32
+ from .modeling_qwen2_mla import Qwen2MLAModel, Qwen2MLAForCausalLM
33
+
34
+
35
+ from .configuration_qwen2_mla import Qwen2MLAConfig
36
+
37
+
38
+
39
+ class LlavaMetaModel:
40
+
41
+ def __init__(self, config):
42
+ super(LlavaMetaModel, self).__init__(config)
43
+
44
+ if hasattr(config, "mm_vision_tower"):
45
+ delay_load = getattr(config, "delay_load", False)
46
+ self.vision_tower = build_vision_tower(config, delay_load=delay_load)
47
+ self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config)
48
+
49
+ if "unpad" in getattr(config, "mm_patch_merge_type", ""):
50
+ self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
51
+ if "nopad" in getattr(config, "mm_patch_merge_type", "") and getattr(self.config, "mm_newline_position", "nothing") != "nothing":
52
+ self.frame_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
53
+
54
+ def get_vision_tower(self):
55
+ vision_tower = getattr(self, "vision_tower", None)
56
+ if type(vision_tower) is list:
57
+ vision_tower = vision_tower[0]
58
+ return vision_tower
59
+
60
+ def initialize_vision_modules(self, model_args, fsdp=None):
61
+ vision_tower = model_args.vision_tower
62
+ mm_vision_select_layer = model_args.mm_vision_select_layer
63
+ mm_vision_select_feature = model_args.mm_vision_select_feature
64
+ pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
65
+ mm_patch_merge_type = model_args.mm_patch_merge_type
66
+
67
+ self.config.mm_vision_tower = vision_tower
68
+ self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "")
69
+
70
+ if self.get_vision_tower() is None:
71
+ vision_tower = build_vision_tower(model_args)
72
+
73
+ if fsdp is not None and len(fsdp) > 0:
74
+ self.vision_tower = [vision_tower]
75
+ else:
76
+ self.vision_tower = vision_tower
77
+ else:
78
+ if fsdp is not None and len(fsdp) > 0:
79
+ vision_tower = self.vision_tower[0]
80
+ else:
81
+ vision_tower = self.vision_tower
82
+ vision_tower.load_model()
83
+
84
+
85
+
86
+ self.config.use_mm_proj = True
87
+ self.config.mm_projector_type = getattr(model_args, "mm_projector_type", "linear")
88
+ self.config.mm_vision_select_layer = mm_vision_select_layer
89
+ self.config.mm_vision_select_feature = mm_vision_select_feature
90
+ self.config.mm_patch_merge_type = mm_patch_merge_type
91
+
92
+ if getattr(self, "mm_projector", None) is None:
93
+ self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config)
94
+
95
+ if "unpad" in mm_patch_merge_type:
96
+ embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
97
+ self.image_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std)
98
+ if "nopad" in getattr(self.config, "mm_patch_merge_type", "") and getattr(self.config, "mm_newline_position", "nothing") != "nothing":
99
+ embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
100
+ self.frame_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std)
101
+ else:
102
+ # In case it is frozen by LoRA
103
+ for p in self.mm_projector.parameters():
104
+ p.requires_grad = True
105
+
106
+ if pretrain_mm_mlp_adapter is not None:
107
+ mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")
108
+
109
+ def get_w(weights, keyword):
110
+ return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}
111
+
112
+ if self.config.mm_projector_type =='lxh_qformer':
113
+ incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"), strict=False)
114
+ else:
115
+ incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))
116
+ print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
117
+
118
+
119
+ class LlavaMetaForCausalLM(ABC):
120
+
121
+ @abstractmethod
122
+ def get_model(self):
123
+ pass
124
+
125
+ def get_vision_tower(self):
126
+ return self.get_model().get_vision_tower()
127
+
128
+
129
+ def encode_video_image(self, images_list, video_idx_in_batch):
130
+ # video encoder编码后按图像的connector处理
131
+ bs = len(images_list)
132
+
133
+ concat_images = []
134
+ concat_videos = []
135
+ for idx, image in enumerate(images_list):
136
+ if idx in video_idx_in_batch:
137
+ concat_videos.append(image)
138
+ else:
139
+ concat_images.append(image)
140
+ # print(concat_videos[0].shape)
141
+ has_image = len(concat_images) > 0
142
+ has_video = len(concat_videos) > 0
143
+
144
+ mm_local_num_frames = getattr(self.config, "mm_local_num_frames", -1)
145
+ assert mm_local_num_frames != -1
146
+ if has_image:
147
+ image_split_sizes = [image.shape[0] for image in concat_images]
148
+ concat_images = torch.cat([image.unsqueeze(1) for image in concat_images], dim=0)
149
+ # print("input vit image.shape:", concat_images.shape)
150
+ images_features = self.get_model().get_vision_tower()(concat_images) # B_i, N, D
151
+ images_features = torch.split(images_features, image_split_sizes)
152
+
153
+ if has_video:
154
+ video_split_sizes = [video.shape[0] // mm_local_num_frames for video in concat_videos]
155
+ concat_videos = torch.cat([video.reshape(video.shape[0] // mm_local_num_frames, mm_local_num_frames, video.shape[1], video.shape[2], video.shape[3]) for video in concat_videos], dim=0)
156
+ # print("input vit video.shape:", concat_videos.shape)
157
+ videos_features = self.get_model().get_vision_tower()(concat_videos) # B_v, N, D
158
+ videos_features = [v.reshape(-1, v.shape[-2] // mm_local_num_frames, v.shape[-1]) for v in torch.split(videos_features, video_split_sizes)]
159
+
160
+
161
+ all_videos_or_images_features = []
162
+ img_idx = 0
163
+ vid_idx = 0
164
+
165
+ for idx in range(bs):
166
+
167
+ if idx in video_idx_in_batch:
168
+ feat = self.get_model().mm_projector(videos_features[vid_idx], compress=True, local_num_frames=getattr(self.config, "mm_local_num_frames", -1))
169
+
170
+ vid_idx += 1
171
+ else:
172
+ feat = self.get_model().mm_projector(images_features[img_idx], compress=False)
173
+ img_idx += 1
174
+ # print("video_idx_in_batch:", video_idx_in_batch)
175
+ all_videos_or_images_features.append(feat)
176
+
177
+ if has_video:
178
+ assert vid_idx == len(videos_features), f"vid: {vid_idx} != {len(videos_features)}"
179
+ if has_image:
180
+ assert img_idx == len(images_features), f"img: {img_idx} != {len(images_features)}"
181
+
182
+ return all_videos_or_images_features
183
+
184
+
185
+
186
+ def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None):
187
+ assert type(modalities) is list, modalities
188
+
189
+ vision_tower = self.get_vision_tower()
190
+ # rank_print(modalities)
191
+ if vision_tower is None or images is None or input_ids.shape[1] == 1:
192
+ return input_ids, position_ids, attention_mask, past_key_values, None, labels
193
+
194
+ if type(images) is list or images.ndim == 5:
195
+ if type(images) is list:
196
+ images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
197
+
198
+ video_idx_in_batch = []
199
+ for _ in range(len(modalities)):
200
+ if modalities[_] == "video":
201
+ video_idx_in_batch.append(_)
202
+
203
+ images_list = []
204
+ for image in images:
205
+ if image.ndim == 4:
206
+ images_list.append(image)
207
+ else:
208
+ images_list.append(image.unsqueeze(0))
209
+
210
+
211
+ vision_encode_type = getattr(self.config, "vision_encode_type", "image")
212
+ mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
213
+ image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
214
+ frame_aspect_ratio = getattr(self.config, "frame_aspect_ratio", "square")
215
+ mm_newline_position = getattr(self.config, "mm_newline_position", "nothing")
216
+
217
+
218
+ if vision_encode_type == "video_image": # video backbone, process video with compress
219
+ image_features = self.encode_video_image(images_list, video_idx_in_batch=video_idx_in_batch)
220
+ else:
221
+ raise NotImplementedError(vision_encode_type)
222
+
223
+
224
+ if mm_patch_merge_type == "flat":
225
+ image_features = [x.flatten(0, 1) for x in image_features]
226
+ elif mm_patch_merge_type.startswith("spatial"):
227
+ new_image_features = []
228
+ for image_idx, image_feature in enumerate(image_features):
229
+
230
+ if image_idx in video_idx_in_batch: # video operations
231
+
232
+ if "anyres" in frame_aspect_ratio:
233
+ raise NotImplementedError
234
+ else:
235
+ frame_feature = image_feature
236
+
237
+ if "pad" in mm_patch_merge_type:
238
+ if mm_newline_position == 'one_token':
239
+ frame_feature = frame_feature.flatten(0, 1)
240
+ if "unpad" in mm_patch_merge_type:
241
+ frame_feature = torch.cat((frame_feature, self.model.image_newline[None].to(frame_feature.device)), dim=0)
242
+ else:
243
+ frame_feature = torch.cat((frame_feature, self.model.frame_newline[None].to(frame_feature.device)), dim=0)
244
+ elif mm_newline_position == 'nothing':
245
+ frame_feature = frame_feature.flatten(0, 1)
246
+ else:
247
+ raise NotImplementedError("add pad please!!")
248
+ else:
249
+ frame_feature = frame_feature.flatten(0, 1)
250
+
251
+ # print(f"final video frame_feature.shape: {frame_feature.shape}")
252
+ image_feature = frame_feature
253
+
254
+ elif image_feature.shape[0] > 1: # multi patches and multi images operations
255
+ base_image_feature = image_feature[0]
256
+ image_feature = image_feature[1:]
257
+ origin_size = image_feature.shape
258
+
259
+ height = width = self.get_model().mm_projector.num_image_patches_per_side
260
+ assert height * width == base_image_feature.shape[0], f"height:{height}, width: {width}, base_image_feature: {base_image_feature.shape}"
261
+
262
+ if "anyres_max" in image_aspect_ratio:
263
+ matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio)
264
+ if matched_anyres_max_num_patches:
265
+ max_num_patches = int(matched_anyres_max_num_patches.group(1))
266
+
267
+ if "anyres" in image_aspect_ratio:
268
+ if hasattr(self.get_vision_tower(), "image_size"):
269
+ vision_tower_image_size = self.get_vision_tower().image_size
270
+ else:
271
+ raise ValueError("vision_tower_image_size is not found in the vision tower.")
272
+ try:
273
+ num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size, max_resolutions=None)
274
+ except Exception as e:
275
+ print(f"Error: {e}")
276
+ raise e
277
+ # num_patch_width, num_patch_height = 2, 2
278
+
279
+ image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
280
+ else:
281
+ raise NotImplementedError(image_aspect_ratio)
282
+ image_feature = image_feature.view(2, 2, height, width, -1)
283
+
284
+ if "maxpool2x2" in mm_patch_merge_type:
285
+ raise NotImplementedError
286
+ elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches:
287
+ raise NotImplementedError
288
+ elif "unpad" in mm_patch_merge_type:
289
+ raise NotImplementedError
290
+ else:
291
+ image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
292
+ image_feature = image_feature.flatten(0, 3)
293
+ if "nobase" in mm_patch_merge_type:
294
+ pass
295
+ else:
296
+ try:
297
+ image_feature = torch.cat((base_image_feature, image_feature), dim=0)
298
+ except Exception as e:
299
+ raise ValueError(f"{num_patch_width} {num_patch_height} now: base_image_feature: {base_image_feature.shape}, {image_feature.shape}, image_sizes[image_idx]: {image_sizes[image_idx]}, origin_size: {origin_size}, {image_sizes[image_idx]}, {self.config.image_grid_pinpoints}, {vision_tower_image_size}")
300
+ else: # single image operations
301
+ image_feature = image_feature[0]
302
+ if "unpad" in mm_patch_merge_type:
303
+ image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0)
304
+
305
+ # print(f"image/video_feature.shape: {image_feature.shape}")
306
+ new_image_features.append(image_feature)
307
+ image_features = new_image_features
308
+ else:
309
+ raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
310
+ else:
311
+ # raise NotImplementedError(f"images.shape={images.shape}, modalities={modalities}")
312
+ image_features = self.encode_image(images)
313
+
314
+ # TODO: image start / end is not implemented here to support pretraining.
315
+ if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
316
+ raise NotImplementedError
317
+ # print(f"Total images len(image_features: {len(image_features)}")
318
+
319
+ # Let's just add dummy tensors if they do not exist,
320
+ # it is a headache to deal with None all the time.
321
+ # But it is not ideal, and if you have a better idea,
322
+ # please open an issue / submit a PR, thanks.
323
+ _labels = labels
324
+ _position_ids = position_ids
325
+ _attention_mask = attention_mask
326
+ if attention_mask is None:
327
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
328
+ else:
329
+ attention_mask = attention_mask.bool()
330
+ if position_ids is None:
331
+ position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
332
+ if labels is None:
333
+ labels = torch.full_like(input_ids, IGNORE_INDEX)
334
+
335
+
336
+ input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
337
+ labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
338
+
339
+ new_input_embeds = []
340
+ new_labels = []
341
+ cur_image_idx = 0
342
+
343
+ mm_llm_compress = getattr(self.config, "mm_llm_compress", False)
344
+
345
+ if mm_llm_compress:
346
+ self.model.llm_compress_type = getattr(self.config, "llm_compress_type", "attention")
347
+ self.model.llm_compress_layer_list = getattr(self.config, "llm_compress_layer_list", [8, 16, 24])
348
+ self.model.llm_image_token_ratio_list = getattr(self.config, "llm_image_token_ratio_list", [1.0, 0.5, 0.25, 0.125])
349
+ first_image_token_position = []
350
+ text_prompt_lens = []
351
+ else:
352
+ self.model.llm_compress_type = "attention"
353
+ self.model.llm_compress_layer_list = []
354
+ self.model.llm_image_token_ratio_list = []
355
+ first_image_token_position = []
356
+ text_prompt_lens = []
357
+
358
+ # rank_print("Inserting Images embedding")
359
+ for batch_idx, cur_input_ids in enumerate(input_ids):
360
+ num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
361
+
362
+ if mm_llm_compress:
363
+ ####### copy from pdrop, only support single image/video NOTE ##################
364
+ # record image position for further dropping
365
+ image_index = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
366
+ assert len(image_index) == 1, f"Only support singe/video: {image_index}"
367
+ if image_index == []:
368
+ first_image_token_position.append(-1)
369
+ else:
370
+ first_image_token_position.append(image_index[0])
371
+
372
+
373
+ # record input instruction length in inference mode
374
+ if not self.training:
375
+ if image_index == []:
376
+ assert num_images == 0, num_images
377
+ else:
378
+ assert num_images == 1, f"num_images={num_images}"
379
+ text_prompt_lens.append(cur_input_ids.shape[0] - num_images) # consider image place holder
380
+
381
+ ###############################################
382
+
383
+ # print(f"num_images={num_images}")
384
+ if num_images == 0:
385
+ cur_image_features = image_features[cur_image_idx]
386
+ cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
387
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
388
+ new_input_embeds.append(cur_input_embeds)
389
+ new_labels.append(labels[batch_idx])
390
+ cur_image_idx += 1
391
+ continue
392
+
393
+ image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
394
+ cur_input_ids_noim = []
395
+ cur_labels = labels[batch_idx]
396
+ cur_labels_noim = []
397
+ for i in range(len(image_token_indices) - 1):
398
+ cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
399
+ cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
400
+ split_sizes = [x.shape[0] for x in cur_labels_noim]
401
+ cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
402
+ cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
403
+ cur_new_input_embeds = []
404
+ cur_new_labels = []
405
+
406
+ for i in range(num_images + 1):
407
+ cur_new_input_embeds.append(cur_input_embeds_no_im[i])
408
+ cur_new_labels.append(cur_labels_noim[i])
409
+ if i < num_images:
410
+ try:
411
+ cur_image_features = image_features[cur_image_idx]
412
+ except IndexError:
413
+ print(f"cur_image_idx={cur_image_idx} is not ok")
414
+ cur_image_features = image_features[cur_image_idx - 1]
415
+ cur_image_idx += 1
416
+ cur_new_input_embeds.append(cur_image_features)
417
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
418
+
419
+ cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
420
+
421
+ # import pdb; pdb.set_trace()
422
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds)
423
+ cur_new_labels = torch.cat(cur_new_labels)
424
+
425
+ new_input_embeds.append(cur_new_input_embeds)
426
+ new_labels.append(cur_new_labels)
427
+
428
+
429
+ if mm_llm_compress:
430
+ self.model.first_image_token_position = first_image_token_position
431
+ self.model.text_prompt_lens = text_prompt_lens
432
+ self.model.num_image_token_lens = [image_feature.shape[0] for image_feature in image_features]
433
+
434
+ # Truncate sequences to max length as image embeddings can make the sequence longer
435
+ tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
436
+ # rank_print("Finishing Inserting")
437
+
438
+ new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
439
+ new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
440
+
441
+ # Combine them
442
+ max_len = max(x.shape[0] for x in new_input_embeds)
443
+ batch_size = len(new_input_embeds)
444
+
445
+ new_input_embeds_padded = []
446
+ new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
447
+ attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
448
+ position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
449
+ # print("Prepare pos id")
450
+
451
+ for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
452
+ cur_len = cur_new_embed.shape[0]
453
+ if getattr(self.config, "tokenizer_padding_side", "right") == "left":
454
+ new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0))
455
+ if cur_len > 0:
456
+ new_labels_padded[i, -cur_len:] = cur_new_labels
457
+ attention_mask[i, -cur_len:] = True
458
+ position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
459
+ else:
460
+ new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0))
461
+ if cur_len > 0:
462
+ new_labels_padded[i, :cur_len] = cur_new_labels
463
+ attention_mask[i, :cur_len] = True
464
+ position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
465
+
466
+ new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
467
+ # print("tokenizer padding")
468
+
469
+ if _labels is None:
470
+ new_labels = None
471
+ else:
472
+ new_labels = new_labels_padded
473
+
474
+ if _attention_mask is None:
475
+ attention_mask = None
476
+ else:
477
+ attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
478
+
479
+ if _position_ids is None:
480
+ position_ids = None
481
+ if getattr(self.config, "use_pos_skipping", False) and self.training:
482
+ position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device)
483
+ split_position = random.randint(0, new_input_embeds.size(1))
484
+ left_add = random.randint(0, self.config.pos_skipping_range)
485
+ right_add = random.randint(left_add, self.config.pos_skipping_range)
486
+ position_ids[:, :split_position] += left_add
487
+ position_ids[:, split_position:] += right_add
488
+ # import pdb; pdb.set_trace()
489
+ # print("Finish preparing")
490
+ return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
491
+
492
+ def initialize_vision_tokenizer(self, model_args, tokenizer):
493
+ if model_args.mm_use_im_patch_token:
494
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
495
+ self.resize_token_embeddings(len(tokenizer))
496
+
497
+ if model_args.mm_use_im_start_end:
498
+ num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
499
+ self.resize_token_embeddings(len(tokenizer))
500
+
501
+ if num_new_tokens > 0:
502
+ input_embeddings = self.get_input_embeddings().weight.data
503
+ output_embeddings = self.get_output_embeddings().weight.data
504
+
505
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
506
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
507
+
508
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
509
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
510
+
511
+ if model_args.tune_mm_mlp_adapter:
512
+ for p in self.get_input_embeddings().parameters():
513
+ p.requires_grad = True
514
+ for p in self.get_output_embeddings().parameters():
515
+ p.requires_grad = False
516
+
517
+ if model_args.pretrain_mm_mlp_adapter:
518
+ mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu")
519
+ embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
520
+ assert num_new_tokens == 2
521
+ if input_embeddings.shape == embed_tokens_weight.shape:
522
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
523
+ elif embed_tokens_weight.shape[0] == num_new_tokens:
524
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight
525
+ else:
526
+ raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
527
+ elif model_args.mm_use_im_patch_token:
528
+ if model_args.tune_mm_mlp_adapter:
529
+ for p in self.get_input_embeddings().parameters():
530
+ p.requires_grad = False
531
+ for p in self.get_output_embeddings().parameters():
532
+ p.requires_grad = False
533
+
534
+
535
+
536
+ class VideoChatFlashQwenConfig(Qwen2MLAConfig):
537
+ model_type = "videochat_flash_qwen"
538
+
539
+
540
+ class VideoChatFlashQwenModel(LlavaMetaModel, Qwen2MLAModel):
541
+ config_class = VideoChatFlashQwenConfig
542
+
543
+ def __init__(self, config: VideoChatFlashQwenConfig):
544
+ super(VideoChatFlashQwenModel, self).__init__(config)
545
+
546
+
547
+ class VideoChatFlashQwenForCausalLM(LlavaMetaForCausalLM, Qwen2MLAForCausalLM):
548
+ config_class = VideoChatFlashQwenConfig
549
+
550
+ def __init__(self, config):
551
+ # super(Qwen2MLAForCausalLM, self).__init__(config)
552
+ Qwen2MLAForCausalLM.__init__(self, config)
553
+ config.model_type = "videochat_flash_qwen"
554
+ # config.rope_scaling = None
555
+
556
+ self.model = VideoChatFlashQwenModel(config)
557
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
558
+ # Initialize weights and apply final processing
559
+ self.post_init()
560
+
561
+ def get_model(self):
562
+ return self.model
563
+
564
+ def forward(
565
+ self,
566
+ input_ids: torch.LongTensor = None,
567
+ attention_mask: Optional[torch.Tensor] = None,
568
+ position_ids: Optional[torch.LongTensor] = None,
569
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
570
+ inputs_embeds: Optional[torch.FloatTensor] = None,
571
+ labels: Optional[torch.LongTensor] = None,
572
+ use_cache: Optional[bool] = None,
573
+ output_attentions: Optional[bool] = None,
574
+ output_hidden_states: Optional[bool] = None,
575
+ images: Optional[torch.FloatTensor] = None,
576
+ image_sizes: Optional[List[List[int]]] = None,
577
+ return_dict: Optional[bool] = None,
578
+ modalities: Optional[List[str]] = ["image"],
579
+ dpo_forward: Optional[bool] = False,
580
+ cache_position=None,
581
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
582
+
583
+ if inputs_embeds is None:
584
+ (input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes)
585
+
586
+ # print("inputs_embeds.shape:", inputs_embeds.shape)
587
+ if dpo_forward:
588
+ raise NotImplementedError
589
+ else:
590
+ return super().forward(
591
+ input_ids=input_ids,
592
+ attention_mask=attention_mask,
593
+ position_ids=position_ids,
594
+ past_key_values=past_key_values,
595
+ inputs_embeds=inputs_embeds,
596
+ labels=labels,
597
+ use_cache=use_cache,
598
+ output_attentions=output_attentions,
599
+ output_hidden_states=output_hidden_states,
600
+ return_dict=return_dict,
601
+ )
602
+
603
+ @torch.no_grad()
604
+ def generate(
605
+ self,
606
+ inputs: Optional[torch.Tensor] = None,
607
+ images: Optional[torch.Tensor] = None,
608
+ image_sizes: Optional[torch.Tensor] = None,
609
+ modalities: Optional[List[str]] = ["image"],
610
+ **kwargs,
611
+ ) -> Union[GenerateOutput, torch.LongTensor]:
612
+ position_ids = kwargs.pop("position_ids", None)
613
+ attention_mask = kwargs.pop("attention_mask", None)
614
+ if "inputs_embeds" in kwargs:
615
+ raise NotImplementedError("`inputs_embeds` is not supported")
616
+
617
+ if images is not None:
618
+ (inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes=image_sizes)
619
+ else:
620
+ self.model.image_token_posi = [-1]
621
+ self.model.prompt_len = None
622
+ self.model.image_tokens = [0]
623
+ inputs_embeds = self.get_model().embed_tokens(inputs)
624
+
625
+ return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)
626
+
627
+ @torch.no_grad()
628
+ def chat(self,
629
+ video_path,
630
+ tokenizer,
631
+ user_prompt,
632
+ chat_history=None,
633
+ return_history=True,
634
+ max_num_frames=512,
635
+ media_dict=None,
636
+ generation_config={}):
637
+
638
+ frames, time_msg = load_video(video_path, max_num_frames=max_num_frames, media_dict=media_dict)
639
+
640
+ image_sizes = [frames[0].shape[:2]]
641
+
642
+ frames = [self.get_vision_tower().image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(self.model.dtype).cuda()]
643
+
644
+ conv = conv_templates["qwen_2"].copy()
645
+
646
+ if chat_history is None or len(chat_history) == 0:
647
+ user_prompt = f'{DEFAULT_IMAGE_TOKEN}\n{time_msg.strip()} {user_prompt}'
648
+ else:
649
+ assert DEFAULT_IMAGE_TOKEN in chat_history[0]['content'], chat_history
650
+ for msg in chat_history:
651
+ conv.append_message(msg['role'], msg['content'])
652
+
653
+ conv.append_message(conv.roles[0], user_prompt)
654
+ conv.append_message(conv.roles[1], None)
655
+
656
+ prompt = conv.get_prompt()
657
+
658
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()
659
+
660
+ if tokenizer.pad_token_id is None:
661
+ if "qwen" in tokenizer.name_or_path.lower():
662
+ print("Setting pad token to bos token for qwen model.")
663
+ tokenizer.pad_token_id = 151643
664
+
665
+ attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
666
+
667
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
668
+ keywords = [stop_str]
669
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
670
+
671
+ with torch.inference_mode():
672
+ output_ids = self.generate(
673
+ inputs=input_ids,
674
+ images=frames,
675
+ attention_mask=attention_masks,
676
+ modalities=["video"],
677
+ image_sizes=image_sizes,
678
+ use_cache=True,
679
+ stopping_criteria=[stopping_criteria],
680
+ **generation_config
681
+ )
682
+
683
+ outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
684
+ if outputs.endswith(stop_str):
685
+ outputs = outputs[: -len(stop_str)]
686
+
687
+ outputs = outputs.strip()
688
+
689
+ # print(f"\033[91m== Question: \033[0m\n{prompt}\n")
690
+ # print(f"\033[91m== Response: \033[0m\n{outputs}\n")
691
+
692
+ if chat_history is None:
693
+ chat_history = []
694
+
695
+ chat_history.append({"role":conv.roles[0], "content":user_prompt})
696
+ chat_history.append({"role":conv.roles[1], "content":outputs})
697
+ if return_history:
698
+ return outputs, chat_history
699
+ else:
700
+ return outputs
701
+
702
+
703
+
704
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
705
+ images = kwargs.pop("images", None)
706
+ image_sizes = kwargs.pop("image_sizes", None)
707
+ inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
708
+ if images is not None:
709
+ inputs["images"] = images
710
+ if image_sizes is not None:
711
+ inputs["image_sizes"] = image_sizes
712
+ return inputs
713
+
714
+
715
+ AutoConfig.register("videochat_flash_qwen", VideoChatFlashQwenConfig)
716
+ AutoModelForCausalLM.register(VideoChatFlashQwenConfig, VideoChatFlashQwenForCausalLM)
.ipynb_checkpoints/test-checkpoint.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModel, AutoTokenizer
2
+ import torch
3
+ from modeling_videochat_flash import VideoChatFlashQwenForCausalLM
4
+
5
+ # model setting
6
+ model_path = './'
7
+
8
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
9
+ model = VideoChatFlashQwenForCausalLM.from_pretrained(model_path).to(torch.bfloat16).cuda()
10
+ image_processor = model.get_vision_tower().image_processor
11
+
12
+ mm_llm_compress = False # use the global compress or not
13
+ if mm_llm_compress:
14
+ model.config.mm_llm_compress = True
15
+ model.config.llm_compress_type = "uniform0_attention"
16
+ model.config.llm_compress_layer_list = [4, 18]
17
+ model.config.llm_image_token_ratio_list = [1, 0.75, 0.25]
18
+ else:
19
+ model.config.mm_llm_compress = False
20
+
21
+ # evaluation setting
22
+ max_num_frames = 512
23
+ generation_config = dict(
24
+ do_sample=False,
25
+ temperature=0.0,
26
+ max_new_tokens=1024,
27
+ top_p=0.1,
28
+ num_beams=1
29
+ )
30
+
31
+ video_path = "test.mp4"
32
+
33
+ # single-turn conversation
34
+ question1 = "Describe this video in detail."
35
+ output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
36
+
37
+ print(output1)
38
+
39
+ # # multi-turn conversation
40
+ # question2 = "How many people appear in the video?"
41
+ # output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
42
+
43
+ # print(output2)
.ipynb_checkpoints/tokenizer-checkpoint.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:540b7fbf60b80e8293593a86960df91d2263723d69107ffc1afc89a7c08cda12
3
+ size 11422162
Untitled.ipynb ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 7,
6
+ "id": "64f33f31-f533-41e8-9821-940a5d2ea343",
7
+ "metadata": {
8
+ "tags": []
9
+ },
10
+ "outputs": [
11
+ {
12
+ "name": "stdout",
13
+ "output_type": "stream",
14
+ "text": [
15
+ "Inspecting file: model-00001-of-00004.safetensors\n",
16
+ "Available keys (tensor names):\n",
17
+ "\n",
18
+ "Key: model.layers.0.input_layernorm.weight\n",
19
+ " Shape: torch.Size([3584])\n",
20
+ " Dtype: torch.bfloat16\n",
21
+ " Size: 3584 elements\n",
22
+ " First few elements: [0.275390625, 0.3046875, 0.26171875, 0.291015625, 0.29296875]\n",
23
+ "\n",
24
+ "Key: model.layers.0.mlp.down_proj.weight\n",
25
+ " Shape: torch.Size([3584, 18944])\n",
26
+ " Dtype: torch.bfloat16\n",
27
+ " Size: 67895296 elements\n",
28
+ " First few elements: [-0.005096435546875, 0.01385498046875, 0.0096435546875, -0.00848388671875, -0.002593994140625]\n",
29
+ "\n",
30
+ "Key: model.layers.0.mlp.gate_proj.weight\n",
31
+ " Shape: torch.Size([18944, 3584])\n",
32
+ " Dtype: torch.bfloat16\n",
33
+ " Size: 67895296 elements\n",
34
+ " First few elements: [0.00286865234375, -0.0201416015625, -0.0216064453125, 0.006622314453125, -0.015625]\n",
35
+ "\n",
36
+ "Key: model.layers.0.mlp.up_proj.weight\n",
37
+ " Shape: torch.Size([18944, 3584])\n",
38
+ " Dtype: torch.bfloat16\n",
39
+ " Size: 67895296 elements\n",
40
+ " First few elements: [0.007537841796875, -0.0111083984375, -0.0024261474609375, -0.006927490234375, -0.02587890625]\n",
41
+ "\n",
42
+ "Key: model.layers.0.post_attention_layernorm.weight\n",
43
+ " Shape: torch.Size([3584])\n",
44
+ " Dtype: torch.bfloat16\n",
45
+ " Size: 3584 elements\n",
46
+ " First few elements: [0.28515625, 0.33203125, 0.259765625, 0.236328125, 0.296875]\n",
47
+ "\n",
48
+ "Key: model.layers.0.self_attn.kv_a_proj_with_mqa.bias\n",
49
+ " Shape: torch.Size([576])\n",
50
+ " Dtype: torch.bfloat16\n",
51
+ " Size: 576 elements\n",
52
+ " First few elements: [3.953125, 0.0634765625, 1.2578125, -1.515625, 0.29296875]\n",
53
+ "\n",
54
+ "Key: model.layers.0.self_attn.kv_a_proj_with_mqa.weight\n",
55
+ " Shape: torch.Size([576, 3584])\n",
56
+ " Dtype: torch.bfloat16\n",
57
+ " Size: 2064384 elements\n",
58
+ " First few elements: [0.0322265625, -0.005157470703125, -0.03173828125, 0.0184326171875, -0.015625]\n",
59
+ "\n",
60
+ "Key: model.layers.0.self_attn.kv_b_proj.weight\n",
61
+ " Shape: torch.Size([7168, 512])\n",
62
+ " Dtype: torch.bfloat16\n",
63
+ " Size: 3670016 elements\n",
64
+ " First few elements: [-0.04931640625, -0.01904296875, 0.080078125, -0.01324462890625, 0.0179443359375]\n",
65
+ "\n",
66
+ "Key: model.layers.0.self_attn.o_proj.weight\n",
67
+ " Shape: torch.Size([3584, 3584])\n",
68
+ " Dtype: torch.bfloat16\n",
69
+ " Size: 12845056 elements\n",
70
+ " First few elements: [0.00323486328125, -0.030029296875, -0.0069580078125, 0.0089111328125, 0.007568359375]\n",
71
+ "\n",
72
+ "Key: model.layers.0.self_attn.q_proj.bias\n",
73
+ " Shape: torch.Size([5376])\n",
74
+ " Dtype: torch.bfloat16\n",
75
+ " Size: 5376 elements\n",
76
+ " First few elements: [0.5, 2.140625, -0.98046875, 1.3671875, 1.015625]\n",
77
+ "\n",
78
+ "Key: model.layers.0.self_attn.q_proj.weight\n",
79
+ " Shape: torch.Size([5376, 3584])\n",
80
+ " Dtype: torch.bfloat16\n",
81
+ " Size: 19267584 elements\n",
82
+ " First few elements: [-0.0003452301025390625, -0.005340576171875, 0.021484375, 0.003997802734375, -0.00274658203125]\n"
83
+ ]
84
+ }
85
+ ],
86
+ "source": [
87
+ "from safetensors import safe_open\n",
88
+ "\n",
89
+ "def inspect_safetensors(file_path):\n",
90
+ " print(f\"Inspecting file: {file_path}\")\n",
91
+ " with safe_open(file_path, framework=\"pt\", device=\"cpu\") as f:\n",
92
+ " print(\"Available keys (tensor names):\")\n",
93
+ " for key in f.keys():\n",
94
+ " if 'model.layers.0' in key:\n",
95
+ " \n",
96
+ " tensor = f.get_tensor(key)\n",
97
+ " print(f\"\\nKey: {key}\")\n",
98
+ " print(f\" Shape: {tensor.shape}\")\n",
99
+ " print(f\" Dtype: {tensor.dtype}\")\n",
100
+ " print(f\" Size: {tensor.numel()} elements\")\n",
101
+ " # 可选:显示前几个元素\n",
102
+ " print(f\" First few elements: {tensor.flatten()[:5].tolist()}\")\n",
103
+ "\n",
104
+ "# 示例路径,请替换为你自己的 .safetensors 文件路径\n",
105
+ "file_path = \"model-00001-of-00004.safetensors\"\n",
106
+ "inspect_safetensors(file_path)"
107
+ ]
108
+ },
109
+ {
110
+ "cell_type": "code",
111
+ "execution_count": 2,
112
+ "id": "2a331ae6-f4ca-4d16-8bbf-36f39b9ac43e",
113
+ "metadata": {},
114
+ "outputs": [
115
+ {
116
+ "ename": "Exception",
117
+ "evalue": "data did not match any variant of untagged enum ModelWrapper at line 757455 column 3",
118
+ "output_type": "error",
119
+ "traceback": [
120
+ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
121
+ "\u001b[0;31mException\u001b[0m Traceback (most recent call last)",
122
+ "Cell \u001b[0;32mIn[2], line 8\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[38;5;66;03m# model setting\u001b[39;00m\n\u001b[1;32m 6\u001b[0m model_path \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[0;32m----> 8\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[43mAutoTokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmodel_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43;01mTrue\u001b[39;49;00m\u001b[43m)\u001b[49m\n\u001b[1;32m 9\u001b[0m model \u001b[38;5;241m=\u001b[39m VideoChatFlashQwenForCausalLM\u001b[38;5;241m.\u001b[39mfrom_pretrained(model_path)\u001b[38;5;241m.\u001b[39mto(torch\u001b[38;5;241m.\u001b[39mbfloat16)\u001b[38;5;241m.\u001b[39mcuda()\n\u001b[1;32m 10\u001b[0m image_processor \u001b[38;5;241m=\u001b[39m model\u001b[38;5;241m.\u001b[39mget_vision_tower()\u001b[38;5;241m.\u001b[39mimage_processor\n",
123
+ "File \u001b[0;32m/opt/conda/envs/vcflash/lib/python3.10/site-packages/transformers/models/auto/tokenization_auto.py:837\u001b[0m, in \u001b[0;36mAutoTokenizer.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, *inputs, **kwargs)\u001b[0m\n\u001b[1;32m 833\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m tokenizer_class \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 834\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[1;32m 835\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mTokenizer class \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mtokenizer_class_candidate\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m does not exist or is not currently imported.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 836\u001b[0m )\n\u001b[0;32m--> 837\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mtokenizer_class\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_pretrained\u001b[49m\u001b[43m(\u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 839\u001b[0m \u001b[38;5;66;03m# Otherwise we have to be creative.\u001b[39;00m\n\u001b[1;32m 840\u001b[0m \u001b[38;5;66;03m# if model is an encoder decoder, the encoder tokenizer class is used by default\u001b[39;00m\n\u001b[1;32m 841\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(config, EncoderDecoderConfig):\n",
124
+ "File \u001b[0;32m/opt/conda/envs/vcflash/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:2086\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase.from_pretrained\u001b[0;34m(cls, pretrained_model_name_or_path, cache_dir, force_download, local_files_only, token, revision, trust_remote_code, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 2083\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 2084\u001b[0m logger\u001b[38;5;241m.\u001b[39minfo(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mloading file \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mfile_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m from cache at \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresolved_vocab_files[file_id]\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2086\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_from_pretrained\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2087\u001b[0m \u001b[43m \u001b[49m\u001b[43mresolved_vocab_files\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2088\u001b[0m \u001b[43m \u001b[49m\u001b[43mpretrained_model_name_or_path\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2089\u001b[0m \u001b[43m \u001b[49m\u001b[43minit_configuration\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2090\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_inputs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2091\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoken\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoken\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2092\u001b[0m \u001b[43m \u001b[49m\u001b[43mcache_dir\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcache_dir\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2093\u001b[0m \u001b[43m \u001b[49m\u001b[43mlocal_files_only\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mlocal_files_only\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2094\u001b[0m \u001b[43m \u001b[49m\u001b[43m_commit_hash\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcommit_hash\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2095\u001b[0m \u001b[43m \u001b[49m\u001b[43m_is_local\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mis_local\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2096\u001b[0m \u001b[43m \u001b[49m\u001b[43mtrust_remote_code\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtrust_remote_code\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2097\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2098\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
125
+ "File \u001b[0;32m/opt/conda/envs/vcflash/lib/python3.10/site-packages/transformers/tokenization_utils_base.py:2325\u001b[0m, in \u001b[0;36mPreTrainedTokenizerBase._from_pretrained\u001b[0;34m(cls, resolved_vocab_files, pretrained_model_name_or_path, init_configuration, token, cache_dir, local_files_only, _commit_hash, _is_local, trust_remote_code, *init_inputs, **kwargs)\u001b[0m\n\u001b[1;32m 2323\u001b[0m \u001b[38;5;66;03m# Instantiate the tokenizer.\u001b[39;00m\n\u001b[1;32m 2324\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m-> 2325\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mcls\u001b[39;49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_inputs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43minit_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2326\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m:\n\u001b[1;32m 2327\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mOSError\u001b[39;00m(\n\u001b[1;32m 2328\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mUnable to load vocabulary from file. \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2329\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mPlease check that the provided vocabulary is accessible and not corrupted.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 2330\u001b[0m )\n",
126
+ "File \u001b[0;32m/opt/conda/envs/vcflash/lib/python3.10/site-packages/transformers/models/qwen2/tokenization_qwen2_fast.py:129\u001b[0m, in \u001b[0;36mQwen2TokenizerFast.__init__\u001b[0;34m(self, vocab_file, merges_file, tokenizer_file, unk_token, bos_token, eos_token, pad_token, **kwargs)\u001b[0m\n\u001b[1;32m 118\u001b[0m unk_token \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 119\u001b[0m AddedToken(unk_token, lstrip\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, rstrip\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, special\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, normalized\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 120\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(unk_token, \u001b[38;5;28mstr\u001b[39m)\n\u001b[1;32m 121\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m unk_token\n\u001b[1;32m 122\u001b[0m )\n\u001b[1;32m 123\u001b[0m pad_token \u001b[38;5;241m=\u001b[39m (\n\u001b[1;32m 124\u001b[0m AddedToken(pad_token, lstrip\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, rstrip\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m, special\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, normalized\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m 125\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(pad_token, \u001b[38;5;28mstr\u001b[39m)\n\u001b[1;32m 126\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m pad_token\n\u001b[1;32m 127\u001b[0m )\n\u001b[0;32m--> 129\u001b[0m \u001b[38;5;28;43msuper\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[38;5;21;43m__init__\u001b[39;49m\u001b[43m(\u001b[49m\n\u001b[1;32m 130\u001b[0m \u001b[43m \u001b[49m\u001b[43mvocab_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 131\u001b[0m \u001b[43m \u001b[49m\u001b[43mmerges_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 132\u001b[0m \u001b[43m \u001b[49m\u001b[43mtokenizer_file\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtokenizer_file\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 133\u001b[0m \u001b[43m \u001b[49m\u001b[43munk_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43munk_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 134\u001b[0m \u001b[43m \u001b[49m\u001b[43mbos_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mbos_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 135\u001b[0m \u001b[43m \u001b[49m\u001b[43meos_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43meos_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 136\u001b[0m \u001b[43m \u001b[49m\u001b[43mpad_token\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mpad_token\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 137\u001b[0m \u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 138\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n",
127
+ "File \u001b[0;32m/opt/conda/envs/vcflash/lib/python3.10/site-packages/transformers/tokenization_utils_fast.py:111\u001b[0m, in \u001b[0;36mPreTrainedTokenizerFast.__init__\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 108\u001b[0m fast_tokenizer \u001b[38;5;241m=\u001b[39m copy\u001b[38;5;241m.\u001b[39mdeepcopy(tokenizer_object)\n\u001b[1;32m 109\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m fast_tokenizer_file \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m from_slow:\n\u001b[1;32m 110\u001b[0m \u001b[38;5;66;03m# We have a serialization from tokenizers which let us directly build the backend\u001b[39;00m\n\u001b[0;32m--> 111\u001b[0m fast_tokenizer \u001b[38;5;241m=\u001b[39m \u001b[43mTokenizerFast\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfrom_file\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfast_tokenizer_file\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 112\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m slow_tokenizer \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 113\u001b[0m \u001b[38;5;66;03m# We need to convert a slow tokenizer to build the backend\u001b[39;00m\n\u001b[1;32m 114\u001b[0m fast_tokenizer \u001b[38;5;241m=\u001b[39m convert_slow_tokenizer(slow_tokenizer)\n",
128
+ "\u001b[0;31mException\u001b[0m: data did not match any variant of untagged enum ModelWrapper at line 757455 column 3"
129
+ ]
130
+ }
131
+ ],
132
+ "source": [
133
+ "from transformers import AutoModel, AutoTokenizer\n",
134
+ "import torch\n",
135
+ "from modeling_videochat_flash import VideoChatFlashQwenForCausalLM\n",
136
+ "\n",
137
+ "# model setting\n",
138
+ "model_path = './'\n",
139
+ "\n",
140
+ "tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)\n",
141
+ "model = VideoChatFlashQwenForCausalLM.from_pretrained(model_path).to(torch.bfloat16).cuda()\n",
142
+ "image_processor = model.get_vision_tower().image_processor\n",
143
+ "\n",
144
+ "mm_llm_compress = False # use the global compress or not\n",
145
+ "if mm_llm_compress:\n",
146
+ " model.config.mm_llm_compress = True\n",
147
+ " model.config.llm_compress_type = \"uniform0_attention\"\n",
148
+ " model.config.llm_compress_layer_list = [4, 18]\n",
149
+ " model.config.llm_image_token_ratio_list = [1, 0.75, 0.25]\n",
150
+ "else:\n",
151
+ " model.config.mm_llm_compress = False\n",
152
+ "\n",
153
+ "# evaluation setting\n",
154
+ "max_num_frames = 512\n",
155
+ "generation_config = dict(\n",
156
+ " do_sample=False,\n",
157
+ " temperature=0.0,\n",
158
+ " max_new_tokens=1024,\n",
159
+ " top_p=0.1,\n",
160
+ " num_beams=1\n",
161
+ ")\n",
162
+ "\n",
163
+ "video_path = \"test.mp4\"\n",
164
+ "\n",
165
+ "# single-turn conversation\n",
166
+ "question1 = \"Describe this video in detail.\"\n",
167
+ "output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)\n",
168
+ "\n",
169
+ "print(output1)\n",
170
+ "\n",
171
+ "# # multi-turn conversation\n",
172
+ "# question2 = \"How many people appear in the video?\"\n",
173
+ "# output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)\n",
174
+ "\n",
175
+ "# print(output2)\n"
176
+ ]
177
+ },
178
+ {
179
+ "cell_type": "code",
180
+ "execution_count": null,
181
+ "id": "8bfd7429-5d77-42ad-8e3f-9cf37b25dfc7",
182
+ "metadata": {},
183
+ "outputs": [],
184
+ "source": []
185
+ }
186
+ ],
187
+ "metadata": {
188
+ "kernelspec": {
189
+ "display_name": "vcflash",
190
+ "language": "python",
191
+ "name": "vcflash"
192
+ },
193
+ "language_info": {
194
+ "codemirror_mode": {
195
+ "name": "ipython",
196
+ "version": 3
197
+ },
198
+ "file_extension": ".py",
199
+ "mimetype": "text/x-python",
200
+ "name": "python",
201
+ "nbconvert_exporter": "python",
202
+ "pygments_lexer": "ipython3",
203
+ "version": "3.10.14"
204
+ }
205
+ },
206
+ "nbformat": 4,
207
+ "nbformat_minor": 5
208
+ }
__pycache__/configuration_qwen2_mla.cpython-312.pyc ADDED
Binary file (1.16 kB). View file
 
__pycache__/constants.cpython-310.pyc ADDED
Binary file (550 Bytes). View file
 
__pycache__/constants.cpython-312.pyc ADDED
Binary file (592 Bytes). View file
 
__pycache__/conversation.cpython-310.pyc ADDED
Binary file (14.4 kB). View file
 
__pycache__/conversation.cpython-312.pyc ADDED
Binary file (22.4 kB). View file
 
__pycache__/mm_projector_builder.cpython-310.pyc ADDED
Binary file (5.02 kB). View file
 
__pycache__/mm_projector_builder.cpython-312.pyc ADDED
Binary file (8.55 kB). View file
 
__pycache__/mm_utils.cpython-310.pyc ADDED
Binary file (23.7 kB). View file
 
__pycache__/mm_utils.cpython-312.pyc ADDED
Binary file (36.5 kB). View file
 
__pycache__/modeling_qwen2_mla.cpython-312.pyc ADDED
Binary file (11.8 kB). View file
 
__pycache__/modeling_videochat_flash.cpython-310.pyc ADDED
Binary file (19.5 kB). View file
 
__pycache__/modeling_videochat_flash.cpython-312.pyc ADDED
Binary file (37.6 kB). View file
 
__pycache__/vision_tower_builder.cpython-310.pyc ADDED
Binary file (19.7 kB). View file
 
__pycache__/vision_tower_builder.cpython-312.pyc ADDED
Binary file (32.3 kB). View file
 
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "VideoChatFlashQwenForCausalLM"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "auto_map": {
7
+ "AutoConfig": "modeling_videochat_flash.VideoChatFlashQwenConfig",
8
+ "AutoModel": "modeling_videochat_flash.VideoChatFlashQwenForCausalLM"
9
+ },
10
+ "bos_token_id": 151643,
11
+ "dual_chunk_attention_config": {
12
+ "chunk_size": 262144,
13
+ "local_size": 8192,
14
+ "original_max_position_embeddings": 262144
15
+ },
16
+ "eos_token_id": 151645,
17
+ "frame_aspect_ratio": "square",
18
+ "frame_grid_pinpoints": null,
19
+ "head_dim": 64,
20
+ "hidden_act": "silu",
21
+ "hidden_size": 3584,
22
+ "image_aspect_ratio": "anyres_nopad",
23
+ "image_crop_resolution": null,
24
+ "image_grid_pinpoints": [
25
+ [
26
+ 224,
27
+ 224
28
+ ],
29
+ [
30
+ 224,
31
+ 448
32
+ ],
33
+ [
34
+ 224,
35
+ 672
36
+ ],
37
+ [
38
+ 224,
39
+ 896
40
+ ],
41
+ [
42
+ 224,
43
+ 1120
44
+ ],
45
+ [
46
+ 224,
47
+ 1344
48
+ ],
49
+ [
50
+ 448,
51
+ 224
52
+ ],
53
+ [
54
+ 448,
55
+ 448
56
+ ],
57
+ [
58
+ 448,
59
+ 672
60
+ ],
61
+ [
62
+ 448,
63
+ 896
64
+ ],
65
+ [
66
+ 448,
67
+ 1120
68
+ ],
69
+ [
70
+ 448,
71
+ 1344
72
+ ],
73
+ [
74
+ 672,
75
+ 224
76
+ ],
77
+ [
78
+ 672,
79
+ 448
80
+ ],
81
+ [
82
+ 672,
83
+ 672
84
+ ],
85
+ [
86
+ 672,
87
+ 896
88
+ ],
89
+ [
90
+ 672,
91
+ 1120
92
+ ],
93
+ [
94
+ 672,
95
+ 1344
96
+ ],
97
+ [
98
+ 896,
99
+ 224
100
+ ],
101
+ [
102
+ 896,
103
+ 448
104
+ ],
105
+ [
106
+ 896,
107
+ 672
108
+ ],
109
+ [
110
+ 896,
111
+ 896
112
+ ],
113
+ [
114
+ 896,
115
+ 1120
116
+ ],
117
+ [
118
+ 896,
119
+ 1344
120
+ ],
121
+ [
122
+ 1120,
123
+ 224
124
+ ],
125
+ [
126
+ 1120,
127
+ 448
128
+ ],
129
+ [
130
+ 1120,
131
+ 672
132
+ ],
133
+ [
134
+ 1120,
135
+ 896
136
+ ],
137
+ [
138
+ 1120,
139
+ 1120
140
+ ],
141
+ [
142
+ 1120,
143
+ 1344
144
+ ],
145
+ [
146
+ 1344,
147
+ 224
148
+ ],
149
+ [
150
+ 1344,
151
+ 448
152
+ ],
153
+ [
154
+ 1344,
155
+ 672
156
+ ],
157
+ [
158
+ 1344,
159
+ 896
160
+ ],
161
+ [
162
+ 1344,
163
+ 1120
164
+ ],
165
+ [
166
+ 1344,
167
+ 1344
168
+ ]
169
+ ],
170
+ "image_split_resolution": null,
171
+ "initializer_range": 0.02,
172
+ "intermediate_size": 18944,
173
+ "llm_compress_layer_list": [
174
+ 8,
175
+ 16,
176
+ 24
177
+ ],
178
+ "llm_compress_type": "attention",
179
+ "llm_image_token_ratio_list": [
180
+ 1.0,
181
+ 0.5,
182
+ 0.25,
183
+ 0.125
184
+ ],
185
+ "max_num_pixels": 14745600000,
186
+ "max_position_embeddings": 32000,
187
+ "max_window_layers": 28,
188
+ "min_slow_num_frames": 4,
189
+ "mm_close_init": false,
190
+ "mm_hidden_size": 1024,
191
+ "mm_llm_compress": false,
192
+ "mm_local_num_frames": 4,
193
+ "mm_newline_position": "nothing",
194
+ "mm_num_compress_latents": 128,
195
+ "mm_num_compress_query_type": "learnable",
196
+ "mm_patch_merge_type": "spatial_nopad",
197
+ "mm_pos_num_frames": 8,
198
+ "mm_projector_lr": null,
199
+ "mm_projector_type": "tome16_mlp_hd64",
200
+ "mm_resampler_type": null,
201
+ "mm_spatial_pool_mode": "bilinear",
202
+ "mm_tunable_parts": "mm_vision_tower,mm_mlp_adapter,mm_language_model",
203
+ "mm_use_im_patch_token": false,
204
+ "mm_use_im_start_end": false,
205
+ "mm_vision_select_feature": "patch",
206
+ "mm_vision_select_layer": -2,
207
+ "mm_vision_tower": "umt-large",
208
+ "mm_vision_tower_lr": 2e-06,
209
+ "model_type": "videochat_flash_qwen",
210
+ "num_attention_heads": 28,
211
+ "num_hidden_layers": 28,
212
+ "num_key_value_heads": 28,
213
+ "pos_skipping_range": 4096,
214
+ "rms_norm_eps": 1e-05,
215
+ "rope_scaling": null,
216
+ "rope_theta": 10000000.0,
217
+ "sliding_window": 32768,
218
+ "tie_word_embeddings": false,
219
+ "tokenizer_model_max_length": 32768,
220
+ "tokenizer_padding_side": "right",
221
+ "torch_dtype": "bfloat16",
222
+ "transformers_version": "4.51.3",
223
+ "use_cache": true,
224
+ "use_mm_proj": true,
225
+ "use_pos_skipping": false,
226
+ "use_sliding_window": false,
227
+ "vision_encode_type": "video_image",
228
+ "vision_tower_pretrained": null,
229
+ "vocab_size": 152064,
230
+ "attention_bias": true,
231
+ "qk_rope_head_dim": 64,
232
+ "qk_nope_head_dim": 128,
233
+ "v_head_dim": 128,
234
+ "q_lora_rank": null,
235
+ "kv_lora_rank": 512,
236
+ "qk_latent_layernorm": false
237
+ }
configuration_qwen2_mla.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.models.qwen2.configuration_qwen2 import Qwen2Config
2
+
3
+ class Qwen2MLAConfig(Qwen2Config):
4
+
5
+ def __init__(
6
+ self,
7
+ *args,
8
+ kv_lora_rank=512,
9
+ q_lora_rank=None,
10
+ qk_rope_head_dim=64,
11
+ qk_nope_head_dim=128,
12
+ v_head_dim=128,
13
+ qk_latent_layernorm=True,
14
+ **kwargs
15
+ ):
16
+ super().__init__(*args, **kwargs)
17
+
18
+ self.kv_lora_rank = kv_lora_rank
19
+ self.q_lora_rank = q_lora_rank
20
+ self.qk_rope_head_dim = qk_rope_head_dim
21
+ self.qk_nope_head_dim = qk_nope_head_dim
22
+ self.qk_head_dim = qk_rope_head_dim + qk_nope_head_dim
23
+ self.v_head_dim = v_head_dim
24
+ self.qk_latent_layernorm = qk_latent_layernorm
constants.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CONTROLLER_HEART_BEAT_EXPIRATION = 30
2
+ WORKER_HEART_BEAT_INTERVAL = 15
3
+
4
+ LOGDIR = "."
5
+
6
+ # Model Constants
7
+ IGNORE_INDEX = -100
8
+ IMAGE_TOKEN_INDEX = -200
9
+ DEFAULT_IMAGE_TOKEN = "<image>"
10
+ DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
11
+ DEFAULT_IM_START_TOKEN = "<im_start>"
12
+ DEFAULT_IM_END_TOKEN = "<im_end>"
conversation.py ADDED
@@ -0,0 +1,592 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import dataclasses
2
+ from enum import auto, Enum
3
+ from typing import List, Any, Dict, Union, Tuple
4
+ import re
5
+ import base64
6
+ from io import BytesIO
7
+ from PIL import Image
8
+ from transformers import AutoTokenizer
9
+
10
+
11
+ class SeparatorStyle(Enum):
12
+ """Different separator style."""
13
+
14
+ SINGLE = auto()
15
+ TWO = auto()
16
+ MPT = auto()
17
+ PLAIN = auto()
18
+ CHATML = auto()
19
+ LLAMA_2 = auto()
20
+ LLAMA_3 = auto()
21
+ QWEN = auto()
22
+ GEMMA = auto()
23
+
24
+
25
+ @dataclasses.dataclass
26
+ class Conversation:
27
+ """A class that keeps all conversation history."""
28
+
29
+ system: str
30
+ roles: List[str]
31
+ messages: List[List[str]]
32
+ offset: int
33
+ sep_style: SeparatorStyle = SeparatorStyle.SINGLE
34
+ sep: str = "###"
35
+ sep2: str = None
36
+ version: str = "Unknown"
37
+
38
+ tokenizer_id: str = ""
39
+ tokenizer: Any = None
40
+ # Stop criteria (the default one is EOS token)
41
+ stop_str: Union[str, List[str]] = None
42
+ # Stops generation if meeting any token in this list
43
+ stop_token_ids: List[int] = None
44
+
45
+ skip_next: bool = False
46
+
47
+ def get_prompt(self):
48
+ messages = self.messages
49
+ if len(messages) > 0 and type(messages[0][1]) is tuple:
50
+ messages = self.messages.copy()
51
+ init_role, init_msg = messages[0].copy()
52
+ init_msg = init_msg[0]
53
+ if "mmtag" in self.version:
54
+ init_msg = init_msg.replace("<image>", "").strip()
55
+ messages[0] = (init_role, init_msg)
56
+ messages.insert(0, (self.roles[0], "<Image><image></Image>"))
57
+ messages.insert(1, (self.roles[1], "Received."))
58
+ elif not init_msg.startswith("<image>"):
59
+ init_msg = init_msg.replace("<image>", "").strip()
60
+ messages[0] = (init_role, "<image>\n" + init_msg)
61
+ else:
62
+ messages[0] = (init_role, init_msg)
63
+
64
+ if self.sep_style == SeparatorStyle.SINGLE:
65
+ ret = self.system + self.sep
66
+ for role, message in messages:
67
+ if message:
68
+ if type(message) is tuple:
69
+ message, _, _ = message
70
+ ret += role + ": " + message + self.sep
71
+ else:
72
+ ret += role + ":"
73
+
74
+ elif self.sep_style == SeparatorStyle.TWO:
75
+ seps = [self.sep, self.sep2]
76
+ ret = self.system + seps[0]
77
+ for i, (role, message) in enumerate(messages):
78
+ if message:
79
+ if type(message) is tuple:
80
+ message, _, _ = message
81
+ ret += role + ": " + message + seps[i % 2]
82
+ else:
83
+ ret += role + ":"
84
+
85
+ elif self.sep_style == SeparatorStyle.CHATML:
86
+ ret = "" if self.system == "" else self.system + self.sep + "\n"
87
+ for role, message in messages:
88
+ if message:
89
+ if type(message) is tuple:
90
+ message, images, _ = message
91
+ message = "<image>" * len(images) + message
92
+ ret += role + "\n" + message + self.sep + "\n"
93
+ else:
94
+ ret += role + "\n"
95
+ return ret
96
+
97
+ elif self.sep_style == SeparatorStyle.LLAMA_3:
98
+ chat_template_messages = [{"role": "system", "content": self.system}]
99
+ for role, message in messages:
100
+ if message:
101
+ if type(message) is tuple:
102
+ message, images = message
103
+ message = "<image>" * len(images) + message
104
+ chat_template_messages.append({"role": role, "content": message})
105
+
106
+ # print(chat_template_messages)
107
+ return self.tokenizer.apply_chat_template(chat_template_messages, tokenize=False, add_generation_prompt=True)
108
+ # ret = "" if self.system == "" else self.system + self.sep + "\n"
109
+ # for role, message in messages:
110
+ # if message:
111
+ # if type(message) is tuple:
112
+ # message, images = message
113
+ # message = "<image>" * len(images) + message
114
+ # ret += role + "\n" + message + self.sep + "\n"
115
+ # else:
116
+ # ret += role + "\n"
117
+ # return ret
118
+
119
+ elif self.sep_style == SeparatorStyle.MPT:
120
+ ret = self.system + self.sep
121
+ for role, message in messages:
122
+ if message:
123
+ if type(message) is tuple:
124
+ message, _, _ = message
125
+ ret += role + message + self.sep
126
+ else:
127
+ ret += role
128
+
129
+ elif self.sep_style == SeparatorStyle.GEMMA:
130
+ ret = ""
131
+ for i, (role, message) in enumerate(messages):
132
+ assert role == self.roles[i % 2], "Conversation should alternate user/assistant/user/assistant/..."
133
+ if message:
134
+ if type(message) is tuple:
135
+ message, _, _ = message
136
+ ret += role + message + self.sep
137
+ else:
138
+ ret += role
139
+
140
+ elif self.sep_style == SeparatorStyle.LLAMA_2:
141
+ wrap_sys = lambda msg: f"<<SYS>>\n{msg}\n<</SYS>>\n\n" if len(msg) > 0 else msg
142
+ wrap_inst = lambda msg: f"[INST] {msg} [/INST]"
143
+ ret = ""
144
+
145
+ for i, (role, message) in enumerate(messages):
146
+ if i == 0:
147
+ assert message, "first message should not be none"
148
+ assert role == self.roles[0], "first message should come from user"
149
+ if message:
150
+ if type(message) is tuple:
151
+ message, _, _ = message
152
+ if i == 0:
153
+ message = wrap_sys(self.system) + message
154
+ if i % 2 == 0:
155
+ message = wrap_inst(message)
156
+ ret += self.sep + message
157
+ else:
158
+ ret += " " + message + " " + self.sep2
159
+ else:
160
+ ret += ""
161
+ ret = ret.lstrip(self.sep)
162
+
163
+ elif self.sep_style == SeparatorStyle.PLAIN:
164
+ seps = [self.sep, self.sep2]
165
+ ret = self.system
166
+ for i, (role, message) in enumerate(messages):
167
+ if message:
168
+ if type(message) is tuple:
169
+ message, _, _ = message
170
+ ret += message + seps[i % 2]
171
+ else:
172
+ ret += ""
173
+ else:
174
+ raise ValueError(f"Invalid style: {self.sep_style}")
175
+
176
+ return ret
177
+
178
+ def append_message(self, role, message):
179
+ self.messages.append([role, message])
180
+
181
+ def process_image(self, image, image_process_mode, return_pil=False, image_format="PNG"):
182
+ if image_process_mode == "Pad":
183
+
184
+ def expand2square(pil_img, background_color=(122, 116, 104)):
185
+ width, height = pil_img.size
186
+ if width == height:
187
+ return pil_img
188
+ elif width > height:
189
+ result = Image.new(pil_img.mode, (width, width), background_color)
190
+ result.paste(pil_img, (0, (width - height) // 2))
191
+ return result
192
+ else:
193
+ result = Image.new(pil_img.mode, (height, height), background_color)
194
+ result.paste(pil_img, ((height - width) // 2, 0))
195
+ return result
196
+
197
+ image = expand2square(image)
198
+ elif image_process_mode in ["Default", "Crop"]:
199
+ pass
200
+ elif image_process_mode == "Resize":
201
+ image = image.resize((336, 336))
202
+ else:
203
+ raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
204
+
205
+ if type(image) is not Image.Image:
206
+ image = Image.open(image).convert("RGB")
207
+
208
+ max_hw, min_hw = max(image.size), min(image.size)
209
+ aspect_ratio = max_hw / min_hw
210
+ max_len, min_len = 672, 448
211
+ shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
212
+ longest_edge = int(shortest_edge * aspect_ratio)
213
+ W, H = image.size
214
+ if H > W:
215
+ H, W = longest_edge, shortest_edge
216
+ else:
217
+ H, W = shortest_edge, longest_edge
218
+ image = image.resize((W, H))
219
+ if return_pil:
220
+ return image
221
+ else:
222
+ buffered = BytesIO()
223
+ image.save(buffered, format=image_format)
224
+ img_b64_str = base64.b64encode(buffered.getvalue()).decode()
225
+ return img_b64_str
226
+
227
+ def get_images(self, return_pil=False, return_path=False):
228
+ images = []
229
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
230
+ if i % 2 == 0:
231
+ if type(msg) is tuple:
232
+ msg, image, image_process_mode = msg
233
+ if type(image) != list:
234
+ image = [image]
235
+ for img in image:
236
+ if not return_path and self.is_image_file(img):
237
+ img = self.process_image(img, image_process_mode, return_pil=return_pil)
238
+ else:
239
+ images.append(img)
240
+ return images
241
+
242
+ def is_image_file(self, filename):
243
+ image_extensions = [".png", ".jpg", ".jpeg", ".gif", ".bmp", ".tiff", ".webp"]
244
+ return any(filename.lower().endswith(ext) for ext in image_extensions)
245
+
246
+ def is_video_file(self, filename):
247
+ video_extensions = [".mp4", ".mov", ".avi", ".mkv", ".wmv", ".flv", ".mpeg", ".mpg"]
248
+ return any(filename.lower().endswith(ext) for ext in video_extensions)
249
+
250
+ def to_gradio_chatbot(self):
251
+ ret = []
252
+ for i, (role, msg) in enumerate(self.messages[self.offset :]):
253
+ if i % 2 == 0:
254
+ if type(msg) is tuple:
255
+ msg, image, image_process_mode = msg
256
+ if type(image) != list:
257
+ image = [image]
258
+ if len(image) == 1:
259
+ msg = "<image>\n" + msg.replace("<image>", "").strip()
260
+ else:
261
+ msg = re.sub(r"(<image>)\n(?=<image>)", r"\1 ", msg)
262
+
263
+ img_str_list = []
264
+ for img in image:
265
+ if self.is_image_file(img):
266
+ img_b64_str = self.process_image(img, "Default", return_pil=False, image_format="JPEG")
267
+ img_str = f'<img src="data:image/jpeg;base64,{img_b64_str}" style="max-width: 256px; max-height: 256px; width: auto; height: auto; object-fit: contain;"/>'
268
+ img_str_list.append(img_str)
269
+ elif self.is_video_file(img):
270
+ ret.append(((img,), None))
271
+
272
+ msg = msg.strip()
273
+ img_place_holder = ""
274
+ for img_str in img_str_list:
275
+ img_place_holder += f"{img_str}\n\n"
276
+
277
+ if len(img_str_list) > 0:
278
+ msg = f"{img_place_holder}\n\n{msg}"
279
+
280
+ if len(msg) > 0:
281
+ ret.append([msg, None])
282
+ else:
283
+ ret.append([msg, None])
284
+ else:
285
+ ret[-1][-1] = msg
286
+ return ret
287
+
288
+ def copy(self):
289
+ return Conversation(system=self.system, roles=self.roles, messages=[[x, y] for x, y in self.messages], offset=self.offset, sep_style=self.sep_style, sep=self.sep, sep2=self.sep2, version=self.version)
290
+
291
+ def dict(self):
292
+ if len(self.get_images()) > 0:
293
+ return {
294
+ "system": self.system,
295
+ "roles": self.roles,
296
+ "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
297
+ "offset": self.offset,
298
+ "sep": self.sep,
299
+ "sep2": self.sep2,
300
+ }
301
+ return {
302
+ "system": self.system,
303
+ "roles": self.roles,
304
+ "messages": self.messages,
305
+ "offset": self.offset,
306
+ "sep": self.sep,
307
+ "sep2": self.sep2,
308
+ }
309
+
310
+
311
+ conv_vicuna_v0 = Conversation(
312
+ system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.",
313
+ roles=("Human", "Assistant"),
314
+ messages=[
315
+ ["Human", "What are the key differences between renewable and non-renewable energy sources?"],
316
+ [
317
+ "Assistant",
318
+ "Renewable energy sources are those that can be replenished naturally in a relatively "
319
+ "short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
320
+ "Non-renewable energy sources, on the other hand, are finite and will eventually be "
321
+ "depleted, such as coal, oil, and natural gas. Here are some key differences between "
322
+ "renewable and non-renewable energy sources:\n"
323
+ "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
324
+ "energy sources are finite and will eventually run out.\n"
325
+ "2. Environmental impact: Renewable energy sources have a much lower environmental impact "
326
+ "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
327
+ "and other negative effects.\n"
328
+ "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
329
+ "have lower operational costs than non-renewable sources.\n"
330
+ "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
331
+ "locations than non-renewable sources.\n"
332
+ "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
333
+ "situations and needs, while non-renewable sources are more rigid and inflexible.\n"
334
+ "6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
335
+ "non-renewable sources are not, and their depletion can lead to economic and social instability.\n",
336
+ ],
337
+ ],
338
+ offset=2,
339
+ sep_style=SeparatorStyle.SINGLE,
340
+ sep="###",
341
+ )
342
+
343
+ conv_vicuna_v1 = Conversation(
344
+ system="A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions.",
345
+ roles=("USER", "ASSISTANT"),
346
+ version="v1",
347
+ messages=[],
348
+ offset=0,
349
+ sep_style=SeparatorStyle.TWO,
350
+ sep=" ",
351
+ sep2="</s>",
352
+ )
353
+
354
+ conv_llama_2 = Conversation(
355
+ system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
356
+
357
+ If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""",
358
+ roles=("USER", "ASSISTANT"),
359
+ version="llama_v2",
360
+ messages=[],
361
+ offset=0,
362
+ sep_style=SeparatorStyle.LLAMA_2,
363
+ sep="<s>",
364
+ sep2="</s>",
365
+ )
366
+
367
+ conv_llava_llama_2 = Conversation(
368
+ system="You are a helpful language and vision assistant. " "You are able to understand the visual content that the user provides, " "and assist the user with a variety of tasks using natural language.",
369
+ roles=("USER", "ASSISTANT"),
370
+ version="llama_v2",
371
+ messages=[],
372
+ offset=0,
373
+ sep_style=SeparatorStyle.LLAMA_2,
374
+ sep="<s>",
375
+ sep2="</s>",
376
+ )
377
+
378
+ # conv_llava_llama_3 = Conversation(
379
+ # system="You are a helpful language and vision assistant. " "You are able to understand the visual content that the user provides, " "and assist the user with a variety of tasks using natural language.",
380
+ # roles=("user", "assistant"),
381
+ # version="llama_v3",
382
+ # messages=[],
383
+ # offset=0,
384
+ # sep="<|eot_id|>",
385
+ # sep_style=SeparatorStyle.LLAMA_3,
386
+ # tokenizer_id="meta-llama/Meta-Llama-3-8B-Instruct",
387
+ # tokenizer=AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct"),
388
+ # stop_token_ids=[128009],
389
+ # )
390
+
391
+ conv_mistral_instruct = Conversation(
392
+ system="",
393
+ roles=("USER", "ASSISTANT"),
394
+ version="llama_v2",
395
+ messages=[],
396
+ offset=0,
397
+ sep_style=SeparatorStyle.LLAMA_2,
398
+ sep="",
399
+ sep2="</s>",
400
+ )
401
+
402
+ conv_llava_llama_2_simple = Conversation(
403
+ system="Answer the questions about the visual content that the user provides.",
404
+ roles=("USER", "ASSISTANT"),
405
+ version="llama_v2",
406
+ messages=[],
407
+ offset=0,
408
+ sep_style=SeparatorStyle.LLAMA_2,
409
+ sep="<s>",
410
+ sep2="</s>",
411
+ )
412
+
413
+ conv_llava_llama_2_mmtag = Conversation(
414
+ system="Answer the questions about the visual content that the user provides." "The visual content will be provided with the following format: <Image>visual content</Image>.",
415
+ roles=("USER", "ASSISTANT"),
416
+ version="llama_v2_mmtag",
417
+ messages=[],
418
+ offset=0,
419
+ sep_style=SeparatorStyle.LLAMA_2,
420
+ sep="<s>",
421
+ sep2="</s>",
422
+ )
423
+
424
+ conv_mpt = Conversation(
425
+ system="""<|im_start|>system
426
+ A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""",
427
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
428
+ version="mpt",
429
+ messages=[],
430
+ offset=0,
431
+ sep_style=SeparatorStyle.MPT,
432
+ sep="<|im_end|>",
433
+ )
434
+
435
+ conv_qwen = Conversation(
436
+ system="""<|im_start|>system
437
+ You are a helpful assistant.""",
438
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
439
+ version="qwen",
440
+ messages=[],
441
+ offset=0,
442
+ sep_style=SeparatorStyle.CHATML,
443
+ sep="<|im_end|>",
444
+ )
445
+
446
+
447
+
448
+ conv_internlm_2 = Conversation(
449
+ system="""<|im_start|>system
450
+ You are a helpful assistant.""",
451
+ roles=("<|im_start|>user", "<|im_start|>assistant"),
452
+ version="internlm_2",
453
+ messages=[],
454
+ offset=0,
455
+ sep_style=SeparatorStyle.CHATML,
456
+ sep="<|im_end|>",
457
+ )
458
+
459
+ conv_gemma_instruct = Conversation(system="", roles=("<start_of_turn>user\n", "<start_of_turn>model\n"), version="gemma", messages=[], offset=0, sep_style=SeparatorStyle.GEMMA, sep="<end_of_turn>\n")
460
+
461
+ conv_llava_plain = Conversation(
462
+ system="",
463
+ roles=("", ""),
464
+ messages=[],
465
+ offset=0,
466
+ sep_style=SeparatorStyle.PLAIN,
467
+ sep="\n",
468
+ )
469
+
470
+ conv_llava_v0 = Conversation(
471
+ system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.",
472
+ roles=("Human", "Assistant"),
473
+ messages=[],
474
+ offset=0,
475
+ sep_style=SeparatorStyle.SINGLE,
476
+ sep="###",
477
+ )
478
+
479
+ conv_llava_v0_mmtag = Conversation(
480
+ system="A chat between a curious user and an artificial intelligence assistant. "
481
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
482
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
483
+ roles=("Human", "Assistant"),
484
+ messages=[],
485
+ offset=0,
486
+ sep_style=SeparatorStyle.SINGLE,
487
+ sep="###",
488
+ version="v0_mmtag",
489
+ )
490
+
491
+ conv_llava_v1 = Conversation(
492
+ system="A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions.",
493
+ roles=("USER", "ASSISTANT"),
494
+ version="v1",
495
+ messages=[],
496
+ offset=0,
497
+ sep_style=SeparatorStyle.TWO,
498
+ sep=" ",
499
+ sep2="</s>",
500
+ )
501
+
502
+ conv_llava_v1_mmtag = Conversation(
503
+ system="A chat between a curious user and an artificial intelligence assistant. "
504
+ "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
505
+ "The visual content will be provided with the following format: <Image>visual content</Image>.",
506
+ roles=("USER", "ASSISTANT"),
507
+ messages=[],
508
+ offset=0,
509
+ sep_style=SeparatorStyle.TWO,
510
+ sep=" ",
511
+ sep2="</s>",
512
+ version="v1_mmtag",
513
+ )
514
+
515
+ conv_mistral_orca = Conversation(
516
+ system="""<|im_start|>system
517
+ You are MistralOrca, a large language model trained by Alignment Lab AI. Write out your reasoning step-by-step to be sure you get the right answers!""",
518
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
519
+ version="mpt",
520
+ messages=[],
521
+ offset=0,
522
+ sep_style=SeparatorStyle.MPT,
523
+ sep="<|im_end|>",
524
+ )
525
+
526
+ conv_mistral_zephyr = Conversation(
527
+ system="""<|system|>
528
+ You are a helpful AI assistant.""",
529
+ roles=("<|user|>\n", "<|assistant|>\n"),
530
+ version="mpt",
531
+ messages=[],
532
+ offset=0,
533
+ sep_style=SeparatorStyle.MPT,
534
+ sep="</s>",
535
+ )
536
+
537
+ conv_mistral_direct = Conversation(
538
+ system="""<|im_start|>system
539
+ Answer the questions.""",
540
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
541
+ version="mpt",
542
+ messages=[],
543
+ offset=0,
544
+ sep_style=SeparatorStyle.MPT,
545
+ sep="<|im_end|>",
546
+ )
547
+
548
+ conv_chatml_direct = Conversation(
549
+ system="""<|im_start|>system
550
+ Answer the questions.""",
551
+ roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
552
+ version="mpt",
553
+ messages=[],
554
+ offset=0,
555
+ sep_style=SeparatorStyle.MPT,
556
+ sep="<|im_end|>",
557
+ )
558
+
559
+ default_conversation = conv_vicuna_v0
560
+ conv_templates = {
561
+ "default": conv_vicuna_v0,
562
+ "v0": conv_vicuna_v0,
563
+ "v1": conv_vicuna_v1,
564
+ "vicuna_v1": conv_vicuna_v1,
565
+ "llama_2": conv_llama_2,
566
+ "mistral_instruct": conv_mistral_instruct,
567
+ "mistral_orca": conv_mistral_orca,
568
+ "mistral_zephyr": conv_mistral_zephyr,
569
+ "mistral_direct": conv_mistral_direct,
570
+ "plain": conv_llava_plain,
571
+ "v0_plain": conv_llava_plain,
572
+ "chatml_direct": conv_chatml_direct,
573
+ "llava_v0": conv_llava_v0,
574
+ "llava_v0_mmtag": conv_llava_v0_mmtag,
575
+ "llava_v1": conv_llava_v1,
576
+ "llava_v1_mmtag": conv_llava_v1_mmtag,
577
+ "llava_llama_2": conv_llava_llama_2,
578
+ # "llava_llama_3": conv_llava_llama_3,
579
+ "llava_llama_2_simple": conv_llava_llama_2_simple,
580
+ "llava_llama_2_mmtag": conv_llava_llama_2_mmtag,
581
+ "llava_mistral_instruct": conv_mistral_instruct,
582
+ "mpt": conv_mpt,
583
+ "qwen_1_5": conv_qwen,
584
+ "qwen_2": conv_qwen,
585
+ "internlm_2": conv_internlm_2,
586
+ "gemma_instruct": conv_gemma_instruct,
587
+ }
588
+
589
+
590
+ if __name__ == "__main__":
591
+ print(default_conversation.get_prompt())
592
+ print(default_conversation)
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.51.3"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
mm_projector_builder.py ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from typing import Callable, Tuple
4
+
5
+
6
+ def bipartite_soft_matching(
7
+ metric: torch.Tensor,
8
+ r: int,
9
+ ) -> Tuple[Callable, Callable]:
10
+ """
11
+ Applies ToMe with a balanced matching set (50%, 50%).
12
+
13
+ Input size is [batch, tokens, channels].
14
+ r indicates the number of tokens to remove (max 50% of tokens).
15
+ """
16
+ protected = 0
17
+
18
+ t = metric.shape[1]
19
+ r = min(r, (t - protected) // 2)
20
+
21
+ assert r > 0, r
22
+
23
+ with torch.no_grad():
24
+ metric = metric / metric.norm(dim=-1, keepdim=True)
25
+ a, b = metric[..., ::2, :], metric[..., 1::2, :]
26
+ scores = a @ b.transpose(-1, -2)
27
+
28
+ node_max, node_idx = scores.max(dim=-1)
29
+ edge_idx = node_max.argsort(dim=-1, descending=True)[..., None]
30
+
31
+ unm_idx = edge_idx[..., r:, :] # Unmerged Tokens
32
+ src_idx = edge_idx[..., :r, :] # Merged Tokens
33
+ dst_idx = node_idx[..., None].gather(dim=-2, index=src_idx)
34
+
35
+ def merge(x: torch.Tensor, mode="mean") -> torch.Tensor:
36
+ src, dst = x[..., ::2, :], x[..., 1::2, :]
37
+ n, t1, c = src.shape
38
+ unm = src.gather(dim=-2, index=unm_idx.expand(n, t1 - r, c))
39
+ src = src.gather(dim=-2, index=src_idx.expand(n, r, c))
40
+ dst = dst.scatter_add(-2, dst_idx.expand(n, r, c), src) # , reduce=mode)
41
+
42
+ return torch.cat([unm, dst], dim=1)
43
+
44
+ def unmerge(x: torch.Tensor) -> torch.Tensor:
45
+ unm_len = unm_idx.shape[1]
46
+ unm, dst = x[..., :unm_len, :], x[..., unm_len:, :]
47
+ n, _, c = unm.shape
48
+
49
+ src = dst.gather(dim=-2, index=dst_idx.expand(n, r, c))
50
+
51
+ out = torch.zeros(n, metric.shape[1], c, device=x.device, dtype=x.dtype)
52
+
53
+ out[..., 1::2, :] = dst
54
+ out.scatter_(dim=-2, index=(2 * unm_idx).expand(n, unm_len, c), src=unm)
55
+ out.scatter_(dim=-2, index=(2 * src_idx).expand(n, r, c), src=src)
56
+
57
+ return out
58
+
59
+ return merge, unmerge
60
+
61
+
62
+ def merge_wavg(
63
+ merge: Callable, x: torch.Tensor, size: torch.Tensor = None
64
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
65
+ """
66
+ Applies the merge function by taking a weighted average based on token size.
67
+ Returns the merged tensor and the new token sizes.
68
+ """
69
+ if size is None:
70
+ size = torch.ones_like(x[..., 0, None])
71
+
72
+ x = merge(x * size, mode="sum")
73
+ size = merge(size, mode="sum")
74
+
75
+ x = x / size
76
+ return x, size
77
+
78
+
79
+
80
+
81
+ class ToMe16_mlp_hd64(nn.Module):
82
+ def __init__(self, config, vision_cfg):
83
+ super().__init__()
84
+ self._config = config
85
+ self.mm_hidden_size = config.mm_hidden_size
86
+ self.hw = vision_cfg.image_size // vision_cfg.patch_size
87
+ self.num_attention_heads = vision_cfg.num_attention_heads
88
+ self.mlp = nn.Sequential(nn.Linear(config.mm_hidden_size, config.hidden_size),
89
+ nn.GELU(),
90
+ nn.Linear(config.hidden_size, config.hidden_size))
91
+ self.max_pos_hw = self.hw
92
+ self.max_pos_num_frames = config.mm_pos_num_frames
93
+ self.num_image_patches_per_side = 8
94
+ self.num_frame_patches_per_side = 4
95
+
96
+ def merge_tokens(self, x, target_num_token):
97
+ r"""
98
+ x = torch.randn(10, 2560, c)
99
+ x = merge_tokens(x, r_merge_list=[1280])
100
+ """
101
+ size = None
102
+ b, p, c = x.shape
103
+ tmp_p = p
104
+ r_merge_list = []
105
+ assert tmp_p > target_num_token, f"{tmp_p} should greater than {target_num_token}"
106
+ while tmp_p != target_num_token:
107
+ if tmp_p - target_num_token <= (tmp_p // 2):
108
+ r_merge_list.append(tmp_p - target_num_token)
109
+ break
110
+ else:
111
+ r_merge_list.append(tmp_p // 2)
112
+ tmp_p = tmp_p - (tmp_p // 2)
113
+
114
+
115
+ head = self.num_attention_heads
116
+
117
+ dim = c // head
118
+ for r in r_merge_list:
119
+ metric = x.reshape(b, p, head, dim).mean(2) # [b, p, c//head]
120
+ merge, _ = bipartite_soft_matching(
121
+ metric,
122
+ r
123
+ )
124
+ x, size = merge_wavg(merge, x, size)
125
+ _, p, _ = x.shape
126
+
127
+ return x
128
+
129
+
130
+
131
+ def forward(self, x, compress=False, local_num_frames=-1): # 单帧64
132
+ height = width = self.hw
133
+ assert height * width == x.shape[1]
134
+
135
+ if local_num_frames != -1 and local_num_frames != 1:
136
+ assert compress is True
137
+ if compress:
138
+ if local_num_frames != -1:
139
+ num_frames = local_num_frames
140
+ x = x.reshape(x.shape[0] // local_num_frames, -1, x.shape[-1])
141
+ else:
142
+ num_frames = x.shape[0]
143
+ x = x.reshape(1, -1, x.shape[-1])
144
+ num_tome_tokens = 16 * num_frames
145
+ else:
146
+ num_tome_tokens = 64
147
+
148
+ x = self.merge_tokens(x, target_num_token=num_tome_tokens)
149
+ x = self.mlp(x)
150
+ return x
151
+
152
+ @property
153
+ def config(self):
154
+ return {"mm_projector_type": "tome16_mlp_hd64"}
155
+
156
+
157
+
158
+
159
+ def build_vision_projector(config, delay_load=False, **kwargs):
160
+ projector_type = getattr(config, "mm_projector_type", "linear")
161
+
162
+ if projector_type == 'tome16_mlp_hd64':
163
+ return ToMe16_mlp_hd64(config, kwargs["vision_cfg"])
164
+
165
+ raise ValueError(f"Unknown projector type: {projector_type}")
mm_utils.py ADDED
@@ -0,0 +1,852 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ from io import BytesIO
3
+ import base64
4
+ import math
5
+ import ast
6
+ import re
7
+ import torch
8
+ from transformers import StoppingCriteria
9
+ from .constants import IMAGE_TOKEN_INDEX
10
+ import random
11
+ import os
12
+ import io
13
+ import av
14
+ import cv2
15
+ import imageio
16
+ from decord import VideoReader
17
+ import numpy as np
18
+ from torchvision.transforms.functional import pil_to_tensor
19
+
20
+
21
+ ######################## load video ########################
22
+
23
+ def get_index(num_frames, num_segments):
24
+ seg_size = float(num_frames - 1) / num_segments
25
+ start = int(seg_size / 2)
26
+ offsets = np.array([
27
+ start + int(np.round(seg_size * idx)) for idx in range(num_segments)
28
+ ])
29
+ return offsets
30
+
31
+
32
+ def pts_to_secs(pts: int, time_base: float, start_pts: int) -> float:
33
+ """
34
+ Converts a present time with the given time base and start_pts offset to seconds.
35
+
36
+ Returns:
37
+ time_in_seconds (float): The corresponding time in seconds.
38
+
39
+ https://github.com/facebookresearch/pytorchvideo/blob/main/pytorchvideo/data/utils.py#L54-L64
40
+ """
41
+ if pts == math.inf:
42
+ return math.inf
43
+
44
+ return int(pts - start_pts) * time_base
45
+
46
+
47
+ def get_pyav_video_duration(video_reader):
48
+ video_stream = video_reader.streams.video[0]
49
+ video_duration = pts_to_secs(
50
+ video_stream.duration,
51
+ video_stream.time_base,
52
+ video_stream.start_time
53
+ )
54
+ return float(video_duration)
55
+
56
+
57
+
58
+ def get_frame_indices(num_frames, vlen, sample='middle', fix_start=None, input_fps=1, min_num_frames=1, max_num_frames=-1, local_num_frames=8):
59
+
60
+ if min_num_frames > vlen:
61
+ if sample == 'dynamic_fps1':
62
+ min_num_frames = (vlen // local_num_frames) * local_num_frames
63
+ else:
64
+ min_num_frames = vlen
65
+
66
+
67
+ if sample == 'dynamic_fps1':
68
+
69
+ duration = float(vlen) / input_fps
70
+ num_segments = int(duration // local_num_frames)
71
+ if num_segments == 0:
72
+ num_frames = local_num_frames
73
+ else:
74
+ num_frames = local_num_frames * num_segments
75
+
76
+ if max_num_frames > 0:
77
+ num_frames = min(num_frames, max_num_frames)
78
+ sample = "middle" # NOTE
79
+
80
+ # logger.info(f"? is OK (img), duation={duration} frames={num_frames}!!!!")
81
+
82
+ num_frames = max(min_num_frames, num_frames)
83
+
84
+ # print(f"\033[0;31m vlen={vlen}, input_fps={input_fps} num_frames={num_frames} \033[0m")
85
+
86
+ if sample in ["rand", "middle"]: # uniform sampling
87
+ acc_samples = min(num_frames, vlen)
88
+ # split the video into `acc_samples` intervals, and sample from each interval.
89
+ intervals = np.linspace(start=0, stop=vlen, num=acc_samples + 1).astype(int)
90
+ ranges = []
91
+ for idx, interv in enumerate(intervals[:-1]):
92
+ ranges.append((interv, intervals[idx + 1] - 1))
93
+ if sample == 'rand':
94
+ try:
95
+ frame_indices = [random.choice(range(x[0], x[1])) for x in ranges]
96
+ except:
97
+ frame_indices = np.random.permutation(vlen)[:acc_samples]
98
+ frame_indices.sort()
99
+ frame_indices = list(frame_indices)
100
+ elif fix_start is not None:
101
+ frame_indices = [x[0] + fix_start for x in ranges]
102
+ elif sample == 'middle':
103
+ frame_indices = [(x[0] + x[1]) // 2 for x in ranges]
104
+ else:
105
+ raise NotImplementedError
106
+
107
+ if len(frame_indices) < num_frames: # padded with last frame
108
+ padded_frame_indices = [frame_indices[-1]] * num_frames
109
+ padded_frame_indices[:len(frame_indices)] = frame_indices
110
+ frame_indices = padded_frame_indices
111
+ elif "fps" in sample: # fps0.5, sequentially sample frames at 0.5 fps
112
+ output_fps = float(sample[3:])
113
+ duration = float(vlen) / input_fps
114
+ delta = 1 / output_fps # gap between frames, this is also the clip length each frame represents
115
+ frame_seconds = np.arange(0 + delta / 2, duration + delta / 2, delta)
116
+ frame_indices = np.around(frame_seconds * input_fps).astype(int)
117
+ frame_indices = [e for e in frame_indices if e < vlen]
118
+ if max_num_frames > 0 and len(frame_indices) > max_num_frames:
119
+ frame_indices = frame_indices[:max_num_frames]
120
+ # frame_indices = np.linspace(0 + delta / 2, duration + delta / 2, endpoint=False, num=max_num_frames)
121
+ else:
122
+ raise ValueError(f"Not support sample type: {sample}")
123
+
124
+
125
+ return frame_indices
126
+
127
+
128
+ def read_frames_av(video_path, num_frames, sample='rand', client=None, fix_start=None, min_num_frames=1, max_num_frames=-1, clip=None, local_num_frames=8):
129
+ if clip is not None:
130
+ raise NotImplementedError("av don't support clip!!!")
131
+ if 's3://' in video_path:
132
+ video_bytes = client.get(video_path)
133
+ byteio = io.BytesIO(video_bytes)
134
+ byteio.seek(0)
135
+ reader = av.open(byteio)
136
+ else:
137
+ byteio = None
138
+ reader = av.open(video_path)
139
+ frames = [f.to_rgb().to_ndarray() for f in reader.decode(video=0)]
140
+ vlen = len(frames)
141
+ duration = get_pyav_video_duration(reader)
142
+ fps = vlen / float(duration)
143
+ frame_indices = get_frame_indices(
144
+ num_frames, vlen, sample=sample, fix_start=fix_start,
145
+ input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
146
+ )
147
+ frames = np.stack([frames[idx] for idx in frame_indices]) # (T, H, W, C), torch.uint8
148
+ # frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
149
+ if byteio != None:
150
+ byteio.close()
151
+
152
+ reader.close()
153
+
154
+ return frames, frame_indices, float(fps), duration
155
+
156
+
157
+ def read_frames_gif(
158
+ video_path, num_frames, sample='rand', fix_start=None,
159
+ min_num_frames=1, max_num_frames=-1, client=None, clip=None, local_num_frames=8
160
+ ):
161
+ if clip is not None:
162
+ raise NotImplementedError("Gif don't support clip!!!")
163
+ if 's3://' in video_path:
164
+ video_bytes = client.get(video_path)
165
+ byteio = io.BytesIO(video_bytes)
166
+ gif = imageio.get_reader(byteio)
167
+ else:
168
+ byteio = None
169
+ gif = imageio.get_reader(video_path)
170
+ vlen = len(gif)
171
+ fps = 1.
172
+ duration = vlen / fps
173
+ frame_indices = get_frame_indices(
174
+ num_frames, vlen, sample=sample, fix_start=fix_start,
175
+ min_num_frames=min_num_frames,
176
+ max_num_frames=max_num_frames, local_num_frames=local_num_frames,
177
+ input_fps=fps
178
+ )
179
+ frames = []
180
+
181
+ min_h = min_w = 100000
182
+ hw_set = set()
183
+ for index, frame in enumerate(gif):
184
+ # for index in frame_idxs:
185
+ if index in frame_indices:
186
+ frame = cv2.cvtColor(frame, cv2.COLOR_RGBA2RGB)
187
+ frame = frame.astype(np.uint8)
188
+ # # (H x W x C) to (C x H x W)
189
+ # frame = frame.permute(2, 0, 1)
190
+ frames.append(frame)
191
+ hw_set.add(frame.shape)
192
+ if frame.shape[0] < min_h:
193
+ min_h = frame.shape[0]
194
+ if frame.shape[1] < min_w:
195
+ min_w = frame.shape[1]
196
+ # print(hw_set, min_h, min_w)
197
+ if len(hw_set) > 1:
198
+ frames = [i[:min_h, :min_w] for i in frames]
199
+
200
+ frames = np.stack(frames) # .float() / 255
201
+
202
+ if byteio != None:
203
+ byteio.close()
204
+
205
+ return frames, frame_indices, float(fps), duration # for tgif
206
+
207
+
208
+
209
+ def read_frames_decord(
210
+ video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
211
+ max_num_frames=-1, client=None, clip=None, local_num_frames=8
212
+ ):
213
+
214
+ if video_path.endswith('.avi'):
215
+ return read_frames_av(video_path=video_path, num_frames=num_frames, sample=sample,
216
+ fix_start=fix_start, min_num_frames=min_num_frames, max_num_frames=max_num_frames,
217
+ client=client, clip=clip, local_num_frames=local_num_frames)
218
+ if 's3://' in video_path:
219
+ video_bytes = client.get(video_path)
220
+ if video_bytes is None or len(video_bytes) == 0:
221
+ raise ValueError(f"Can't read byte from {video_path}!")
222
+ byteio = io.BytesIO(video_bytes)
223
+ video_reader = VideoReader(byteio, num_threads=1)
224
+ else:
225
+ byteio = None
226
+ video_reader = VideoReader(video_path, num_threads=1)
227
+ vlen = len(video_reader)
228
+ fps = video_reader.get_avg_fps()
229
+ duration = vlen / float(fps)
230
+
231
+
232
+ if clip:
233
+ start, end = clip
234
+ start = max(0, start)
235
+ end = min(duration - 0.1, end)
236
+ duration = end - start
237
+ vlen = int(duration * fps)
238
+ start_index = int(start * fps)
239
+
240
+ frame_indices = get_frame_indices(
241
+ num_frames, vlen, sample=sample, fix_start=fix_start,
242
+ input_fps=fps, min_num_frames=min_num_frames, max_num_frames=max_num_frames, local_num_frames=local_num_frames
243
+ )
244
+ if clip:
245
+ frame_indices = [f + start_index for f in frame_indices]
246
+
247
+ # print(fps, frame_indices)
248
+ frames = video_reader.get_batch(frame_indices).asnumpy() # (T, H, W, C), torch.uint8
249
+ # https://github.com/dmlc/decord/issues/208
250
+ video_reader.seek(0)
251
+
252
+ if byteio != None:
253
+ byteio.close()
254
+ # frames = frames.permute(0, 3, 1, 2) # (T, C, H, W), torch.uint8
255
+ return frames, frame_indices, float(fps), duration
256
+
257
+
258
+
259
+ def read_frames_img(
260
+ video_path, num_frames, sample='rand', fix_start=None, min_num_frames=1,
261
+ max_num_frames=-1, client=None, clip=None, local_num_frames=8
262
+ ):
263
+ def extract_frame_number(filename):
264
+ # Extract the numeric part from the filename using regular expressions
265
+ if filename.endswith('.jpg'):
266
+ match = re.search(r'_(\d+).jpg$', filename)
267
+ elif filename.endswith('.jpeg'):
268
+ match = re.search(r'_(\d+).jpeg$', filename)
269
+ elif filename.endswith('.png'):
270
+ match = re.search(r'_(\d+).png$', filename)
271
+ else:
272
+ raise NotImplementedError(f"Wrong filename: {filename}")
273
+
274
+ return int(match.group(1)) if match else -1
275
+
276
+
277
+ def sort_frames(frame_paths):
278
+ # Extract filenames from each path and sort by their numeric part
279
+ return sorted(frame_paths, key=lambda x: extract_frame_number(os.path.basename(x)))
280
+
281
+ # img_list=[]
282
+
283
+ if "s3://" in video_path:
284
+ img_list = sort_frames(client.list(video_path))
285
+ else:
286
+ img_list = sort_frames(list(os.listdir(video_path)))
287
+
288
+
289
+ if 'tvqa' in video_path.lower():
290
+ fps = 3.0
291
+ else:
292
+ fps = 1.0
293
+
294
+ if clip is not None:
295
+ start = float(clip[0])
296
+ end = float(clip[1])
297
+ start = max(0, start)
298
+ end = min(len(img_list) / fps, end)
299
+ vlen = (end - start) * fps
300
+ else:
301
+ vlen = len(img_list)
302
+
303
+ duration = vlen / fps
304
+
305
+ if min_num_frames > vlen:
306
+ if sample == 'dynamic_fps1':
307
+ min_num_frames = (vlen // local_num_frames) * local_num_frames
308
+ else:
309
+ min_num_frames = vlen
310
+
311
+ if sample == 'dynamic_fps1':
312
+ num_segments = int(duration // local_num_frames)
313
+ if num_segments == 0:
314
+ num_frames = local_num_frames
315
+ else:
316
+ num_frames = local_num_frames * num_segments
317
+ num_frames = min(num_frames, max_num_frames)
318
+ num_frames = max(min_num_frames, num_frames)
319
+
320
+ num_frames = int(num_frames)
321
+ if clip is not None:
322
+ def _get_index_by_time(start_sec, end_sec, num_segments=8, fps=1., max_frame=9999):
323
+ start_idx = max(1, round(start_sec * fps))
324
+ end_idx = min(round(end_sec * fps), max_frame)
325
+ seg_size = float(end_idx - start_idx) / (num_segments - 1)
326
+ offsets = np.array([start_idx + int(np.round(seg_size * idx)) for idx in range(num_segments)])
327
+ return offsets
328
+
329
+ frame_indices = _get_index_by_time(float(clip[0]), float(clip[1]), num_segments=num_frames, fps=fps, max_frame=len(img_list)-1)
330
+ else:
331
+ frame_indices = get_frame_indices(
332
+ num_frames, vlen, sample=sample, fix_start=fix_start,
333
+ min_num_frames=min_num_frames,
334
+ max_num_frames=max_num_frames, local_num_frames=local_num_frames
335
+ )
336
+
337
+ imgs = []
338
+ for idx in frame_indices:
339
+ frame_fname = os.path.join(video_path, img_list[idx])
340
+ if "s3://" in video_path:
341
+ img_bytes = client.get(frame_fname)
342
+ else:
343
+ with open(frame_fname, 'rb') as f:
344
+ img_bytes = f.read()
345
+ img_np = np.frombuffer(img_bytes, np.uint8)
346
+ img = cv2.imdecode(img_np, cv2.IMREAD_COLOR)
347
+ cv2.cvtColor(img, cv2.COLOR_BGR2RGB, img)
348
+ imgs.append(img)
349
+
350
+ frames = np.array(imgs, dtype=np.uint8)
351
+
352
+
353
+ return frames, frame_indices, fps, duration
354
+
355
+
356
+
357
+ VIDEO_READER_FUNCS = {
358
+ 'av': read_frames_av,
359
+ 'decord': read_frames_decord,
360
+ 'gif': read_frames_gif,
361
+ 'img': read_frames_img,
362
+ 'frame': read_frames_img
363
+ }
364
+
365
+
366
+
367
+ def load_video(video_path, max_num_frames=512, media_dict=None): #, media_dict):
368
+
369
+ if media_dict is None:
370
+ media_dict = {'video_read_type': 'decord'}
371
+
372
+ if type(video_path) != str:
373
+ assert len(video_path) == 1, video_path
374
+ video_path = video_path[0]
375
+
376
+ if 'start' in media_dict:
377
+ clip = [media_dict['start'], media_dict['end']]
378
+ else:
379
+ clip = None
380
+
381
+
382
+ client = None
383
+
384
+ frames, frame_indices, fps, duration = VIDEO_READER_FUNCS[media_dict['video_read_type']](video_path=video_path, num_frames=max_num_frames, sample='dynamic_fps1', fix_start=None, min_num_frames=64, max_num_frames=max_num_frames, client=client, clip=clip, local_num_frames=8)
385
+
386
+ sec = [str(round(f / fps, 1)) for f in frame_indices]
387
+
388
+ msg = f"\nThe video lasts for {duration:.2f} seconds, and {len(sec)} frames are uniformly sampled from it. "
389
+
390
+ return frames, msg
391
+
392
+
393
+ ######################## load video ########################
394
+
395
+
396
+ def resize_and_center_crop(image, shortest_edge_length):
397
+ # Calculate new dimensions and resize
398
+ aspect_ratio = float(image.width) / float(image.height)
399
+ if aspect_ratio > 1:
400
+ new_width = int(shortest_edge_length * aspect_ratio)
401
+ new_height = shortest_edge_length
402
+ else:
403
+ new_width = shortest_edge_length
404
+ new_height = int(shortest_edge_length / aspect_ratio)
405
+ resized_image = image.resize((new_width, new_height), Image.ANTIALIAS)
406
+
407
+ # Calculate the position and perform the center crop
408
+ left = (new_width - shortest_edge_length) / 2
409
+ top = (new_height - shortest_edge_length) / 2
410
+ right = (new_width + shortest_edge_length) / 2
411
+ bottom = (new_height + shortest_edge_length) / 2
412
+ cropped_image = resized_image.crop((left, top, right, bottom))
413
+
414
+ return cropped_image
415
+
416
+
417
+ def auto_pad_images(image, grid_params):
418
+ assert isinstance(image, Image.Image), "Input should be a Pillow Image"
419
+ assert len(grid_params) > 0, "Grid parameters should not be empty"
420
+
421
+ # Step 1: Calculate and find the closest aspect ratio
422
+ input_width, input_height = image.size
423
+ input_aspect_ratio = input_width / input_height
424
+ candidate_resolutions = [(w / h, w, h) for w in grid_params for h in grid_params]
425
+ closest_aspect_ratio = min(candidate_resolutions, key=lambda x: abs(input_aspect_ratio - x[0]))
426
+
427
+ candidate_resolutions = [(x[1], x[2]) for x in candidate_resolutions if abs(x[0] - closest_aspect_ratio[0]) < 1e-3]
428
+
429
+ target_resolution = min(candidate_resolutions, key=lambda res: abs(max(input_width, input_height) / max(res) - 1))
430
+
431
+ resize_width, resize_height = target_resolution
432
+ if input_width > input_height:
433
+ resize_height = int(resize_width / input_aspect_ratio)
434
+ else:
435
+ resize_width = int(resize_height * input_aspect_ratio)
436
+ resized_image = image.resize((resize_width, resize_height), Image.ANTIALIAS)
437
+
438
+ # Step 5: Pad the resized image if necessary to match the target resolution
439
+ pad_width = target_resolution[0] - resize_width
440
+ pad_height = target_resolution[1] - resize_height
441
+ padded_image = Image.new("RGB", target_resolution, color=(0, 0, 0))
442
+ padded_image.paste(resized_image, (pad_width // 2, pad_height // 2))
443
+
444
+ return padded_image
445
+
446
+
447
+ def extract_patches(image, patch_size, overlap_ratio):
448
+ assert isinstance(image, Image.Image), "Input should be a Pillow Image"
449
+ assert patch_size > 0, "Patch size should be greater than 0"
450
+ assert 0 <= overlap_ratio < 1, "Overlap ratio should be between 0 and 1"
451
+
452
+ W, H = image.size
453
+ patches = []
454
+
455
+ stride = int(patch_size * (1 - overlap_ratio))
456
+
457
+ num_patches_y = (H - patch_size) // stride + 1
458
+ num_patches_x = (W - patch_size) // stride + 1
459
+
460
+ y_start = (H - (num_patches_y - 1) * stride - patch_size) // 2
461
+ x_start = (W - (num_patches_x - 1) * stride - patch_size) // 2
462
+
463
+ for y in range(y_start, y_start + num_patches_y * stride, stride):
464
+ for x in range(x_start, x_start + num_patches_x * stride, stride):
465
+ patch = image.crop((x, y, x + patch_size, y + patch_size))
466
+ patches.append(patch)
467
+
468
+ return patches
469
+
470
+
471
+ def process_highres_image_crop_split(image, data_args, processor=None):
472
+ crop_resolution = data_args.image_crop_resolution
473
+ split_resolution = data_args.image_split_resolution
474
+ if processor is None:
475
+ processor = data_args.image_processor
476
+ image_crop = resize_and_center_crop(image, crop_resolution)
477
+ image_patches = extract_patches(image_crop, patch_size=split_resolution, overlap_ratio=0)
478
+ image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
479
+ return torch.stack(image_patches, dim=0)
480
+
481
+
482
+ def process_highres_image(image, processor, grid_pinpoints):
483
+ grid_params = [int(x) for x in grid_pinpoints.split(",")]
484
+ width_height = max(image.size)
485
+ fit_grid_params = [x for x in grid_params if x >= width_height]
486
+ if len(fit_grid_params) == 0:
487
+ select_size = max(grid_params)
488
+ else:
489
+ select_size = min(fit_grid_params)
490
+ # FIXME: always select the 448
491
+ select_size = max(grid_params)
492
+ image_padded = expand2square(image, tuple(int(x * 255) for x in processor.image_mean))
493
+
494
+ # FIXME: this seems to be a bug that it always resizes instead of padding
495
+ image_original_resize = image.resize((processor.size["shortest_edge"], processor.size["shortest_edge"]))
496
+ image_padded = image_padded.resize((select_size, select_size))
497
+ image_patches = extract_patches(image_padded, patch_size=processor.size["shortest_edge"], overlap_ratio=0)
498
+ image_patches = [image_original_resize] + image_patches
499
+ image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
500
+ return torch.stack(image_patches, dim=0)
501
+
502
+
503
+ def select_best_resolution(original_size, possible_resolutions, max_resolutions, patch_size):
504
+ """
505
+ Selects the best resolution from a list of possible resolutions based on the original size.
506
+
507
+ Args:
508
+ original_size (tuple): The original size of the image in the format (width, height).
509
+ possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
510
+
511
+ Returns:
512
+ tuple: The best fit resolution in the format (width, height).
513
+ """
514
+ original_width, original_height = original_size
515
+ best_fit = None
516
+ max_effective_resolution = 0
517
+ min_wasted_resolution = float("inf")
518
+
519
+ for width, height in possible_resolutions:
520
+ if max_resolutions != None and (width * height != patch_size * patch_size):
521
+ if (width * height+patch_size*patch_size) > max_resolutions: # NOTE 要算一个global
522
+ continue
523
+ # Calculate the downscaled size to keep the aspect ratio
524
+ scale = min(width / original_width, height / original_height)
525
+ downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
526
+
527
+ # Calculate effective and wasted resolutions
528
+ effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
529
+ wasted_resolution = (width * height) - effective_resolution
530
+
531
+ if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
532
+ max_effective_resolution = effective_resolution
533
+ min_wasted_resolution = wasted_resolution
534
+ best_fit = (width, height)
535
+
536
+ # print(f"original_size={original_size}, possible_resolutions={possible_resolutions}, max_resolutions={max_resolutions}, best_fit={best_fit}")
537
+ assert best_fit is not None, f"Can't find suitable fit in {possible_resolutions} at max:{max_resolutions}"
538
+ return best_fit
539
+
540
+
541
+ def resize_and_pad_image(image, target_resolution):
542
+ """
543
+ Resize and pad an image to a target resolution while maintaining aspect ratio.
544
+
545
+ Args:
546
+ image (PIL.Image.Image): The input image.
547
+ target_resolution (tuple): The target resolution (width, height) of the image.
548
+
549
+ Returns:
550
+ PIL.Image.Image: The resized and padded image.
551
+ """
552
+ original_width, original_height = image.size
553
+ target_width, target_height = target_resolution
554
+
555
+ # Determine which dimension (width or height) to fill
556
+ scale_w = target_width / original_width
557
+ scale_h = target_height / original_height
558
+
559
+ if scale_w < scale_h:
560
+ # Width will be filled completely
561
+ new_width = target_width
562
+ new_height = min(math.ceil(original_height * scale_w), target_height)
563
+ else:
564
+ # Height will be filled completely
565
+ new_height = target_height
566
+ new_width = min(math.ceil(original_width * scale_h), target_width)
567
+
568
+ # Resize the image
569
+ resized_image = image.resize((new_width, new_height))
570
+
571
+ # Create a new image with the target size and paste the resized image onto it
572
+ new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
573
+ paste_x = (target_width - new_width) // 2
574
+ paste_y = (target_height - new_height) // 2
575
+ new_image.paste(resized_image, (paste_x, paste_y))
576
+
577
+ return new_image
578
+
579
+
580
+ def divide_to_patches(image, patch_size):
581
+ """
582
+ Divides an image into patches of a specified size.
583
+
584
+ Args:
585
+ image (PIL.Image.Image): The input image.
586
+ patch_size (int): The size of each patch.
587
+
588
+ Returns:
589
+ list: A list of PIL.Image.Image objects representing the patches.
590
+ """
591
+ patches = []
592
+ width, height = image.size
593
+ for i in range(0, height, patch_size):
594
+ for j in range(0, width, patch_size):
595
+ box = (j, i, j + patch_size, i + patch_size)
596
+ patch = image.crop(box)
597
+ patches.append(patch)
598
+
599
+ return patches
600
+
601
+
602
+ def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size, max_resolutions=None):
603
+ """
604
+ Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
605
+
606
+ Args:
607
+ image_size (tuple): The size of the input image in the format (width, height).
608
+ grid_pinpoints (str): A string representation of a list of possible resolutions.
609
+ patch_size (int): The size of each image patch.
610
+
611
+ Returns:
612
+ tuple: The shape of the image patch grid in the format (width, height).
613
+ """
614
+ if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
615
+ assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
616
+ # Use regex to extract the range from the input string
617
+ matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
618
+ range_start = tuple(map(int, matches[0]))
619
+ range_end = tuple(map(int, matches[-1]))
620
+ # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
621
+ grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
622
+ # Multiply all elements by patch_size
623
+ grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
624
+ if type(grid_pinpoints) is list:
625
+ possible_resolutions = grid_pinpoints
626
+ else:
627
+ possible_resolutions = ast.literal_eval(grid_pinpoints)
628
+ width, height = select_best_resolution(image_size, possible_resolutions, max_resolutions=max_resolutions, patch_size=patch_size)
629
+
630
+ # print("get width/patch size", width, patch_size, flush=True)
631
+
632
+ return width // patch_size, height // patch_size
633
+
634
+
635
+ def process_anyres_image(image, processor, grid_pinpoints):
636
+ """
637
+ Process an image with variable resolutions.
638
+
639
+ Args:
640
+ image (PIL.Image.Image): The input image to be processed.
641
+ processor: The image processor object.
642
+ grid_pinpoints (str): A string representation of a list of possible resolutions.
643
+
644
+ Returns:
645
+ torch.Tensor: A tensor containing the processed image patches.
646
+ """
647
+ raise NotImplementedError
648
+ # Convert grid_pinpoints from string to list
649
+ if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
650
+ try:
651
+ patch_size = processor.size[0]
652
+ except Exception as e:
653
+ patch_size = processor.size["shortest_edge"]
654
+ assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
655
+ # Use regex to extract the range from the input string
656
+ matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
657
+ range_start = tuple(map(int, matches[0]))
658
+ range_end = tuple(map(int, matches[-1]))
659
+ # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
660
+ grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
661
+ # Multiply all elements by patch_size
662
+ grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
663
+
664
+ if type(grid_pinpoints) is list:
665
+ possible_resolutions = grid_pinpoints
666
+ else:
667
+ possible_resolutions = ast.literal_eval(grid_pinpoints)
668
+ best_resolution = select_best_resolution(image.size, possible_resolutions)
669
+ image_padded = resize_and_pad_image(image, best_resolution)
670
+
671
+ patches = divide_to_patches(image_padded, processor.crop_size["height"])
672
+
673
+ # FIXME: this seems to be a bug that it resizes instead of pad.
674
+ # but to keep it consistent with previous, i will keep it as it is
675
+ # TODO: uncomment below to ablate with the padding
676
+ if isinstance(processor.size, dict):
677
+ shortest_edge = processor.size["shortest_edge"]
678
+ else:
679
+ shortest_edge = min(processor.size)
680
+ image_original_resize = image.resize((shortest_edge, shortest_edge))
681
+ # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
682
+ # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
683
+
684
+ image_patches = [image_original_resize] + patches
685
+ image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
686
+
687
+ # print("image.size", image.size, "len(image_patches):", len(image_patches), "patch_size:", image_patches[0].shape)
688
+ return torch.stack(image_patches, dim=0)
689
+
690
+ def process_anyres_image_nopad(image, processor, grid_pinpoints):
691
+ """
692
+ Process an image with variable resolutions.
693
+
694
+ Args:
695
+ image (PIL.Image.Image): The input image to be processed.
696
+ processor: The image processor object.
697
+ grid_pinpoints (str): A string representation of a list of possible resolutions.
698
+
699
+ Returns:
700
+ torch.Tensor: A tensor containing the processed image patches.
701
+ """
702
+ # Convert grid_pinpoints from string to list
703
+ try:
704
+ patch_size = processor.size[0]
705
+ except Exception as e:
706
+ patch_size = processor.size["shortest_edge"]
707
+
708
+ assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
709
+
710
+ if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
711
+
712
+ # Use regex to extract the range from the input string
713
+ matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
714
+ range_start = tuple(map(int, matches[0]))
715
+ range_end = tuple(map(int, matches[-1]))
716
+ # Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
717
+ grid_pinpoints = [(i, j) for i in range(range_start[0], range_end[0] + 1) for j in range(range_start[1], range_end[1] + 1)]
718
+ # Multiply all elements by patch_size
719
+ grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
720
+
721
+ if type(grid_pinpoints) is list:
722
+ possible_resolutions = grid_pinpoints
723
+ else:
724
+ possible_resolutions = ast.literal_eval(grid_pinpoints)
725
+ best_resolution = select_best_resolution(image.size, possible_resolutions, max_resolutions=None, patch_size=patch_size) # 目前图像无限制
726
+ # image_padded = resize_and_pad_image(image, best_resolution)
727
+
728
+ patches = divide_to_patches(image.resize(best_resolution), patch_size)
729
+
730
+ # FIXME: this seems to be a bug that it resizes instead of pad.
731
+ # but to keep it consistent with previous, i will keep it as it is
732
+ # TODO: uncomment below to ablate with the padding
733
+ if isinstance(processor.size, dict):
734
+ shortest_edge = processor.size["shortest_edge"]
735
+ else:
736
+ shortest_edge = min(processor.size)
737
+ image_original_resize = image.resize((shortest_edge, shortest_edge))
738
+ # image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
739
+ # image_original_resize = image_padded_square.resize((processor.size['shortest_edge'], processor.size['shortest_edge']))
740
+
741
+ image_patches = [image_original_resize] + patches
742
+ image_patches = [processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0] for image_patch in image_patches]
743
+
744
+ # raise ValueError(f"image.size: {image.size} len(image_patches): {len(image_patches)}, patch_size:, {image_patches[0].shape}, possible_resolutions:, {possible_resolutions}, best: {best_resolution}")
745
+ return torch.stack(image_patches, dim=0)
746
+
747
+
748
+ def load_image_from_base64(image):
749
+ return Image.open(BytesIO(base64.b64decode(image)))
750
+
751
+
752
+ def expand2square(pil_img, background_color):
753
+ width, height = pil_img.size
754
+ if width == height:
755
+ return pil_img
756
+ elif width > height:
757
+ result = Image.new(pil_img.mode, (width, width), background_color)
758
+ result.paste(pil_img, (0, (width - height) // 2))
759
+ return result
760
+ else:
761
+ result = Image.new(pil_img.mode, (height, height), background_color)
762
+ result.paste(pil_img, ((height - width) // 2, 0))
763
+ return result
764
+
765
+
766
+ def process_images(images, image_processor, model_cfg):
767
+ image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
768
+ new_images = []
769
+ if image_aspect_ratio == "highres":
770
+ raise NotImplementedError
771
+ for image in images:
772
+ image = process_highres_image(image, image_processor, model_cfg.image_grid_pinpoints)
773
+ new_images.append(image)
774
+ elif "anyres" in image_aspect_ratio:
775
+ for image in images:
776
+ if "nopad" in image_aspect_ratio:
777
+ image = process_anyres_image_nopad(image, image_processor, model_cfg.image_grid_pinpoints)
778
+ else:
779
+ image = process_anyres_image(image, image_processor, model_cfg.image_grid_pinpoints)
780
+ new_images.append(image)
781
+ elif image_aspect_ratio == "crop_split":
782
+ raise NotImplementedError
783
+ for image in images:
784
+ image = process_highres_image_crop_split(image, model_cfg, image_processor)
785
+ new_images.append(image)
786
+ elif image_aspect_ratio == "pad":
787
+ for image in images:
788
+ image = expand2square(image, tuple(int(x * 255) for x in image_processor.image_mean))
789
+ image = image_processor.preprocess(image, return_tensors="pt")["pixel_values"][0]
790
+ new_images.append(image)
791
+ else:
792
+ return image_processor.preprocess(images, return_tensors="pt")["pixel_values"]
793
+ if all(x.shape == new_images[0].shape for x in new_images):
794
+ new_images = torch.stack(new_images, dim=0)
795
+ return new_images
796
+
797
+
798
+ def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
799
+ prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
800
+
801
+ def insert_separator(X, sep):
802
+ return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
803
+
804
+ input_ids = []
805
+ offset = 0
806
+ if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
807
+ offset = 1
808
+ input_ids.append(prompt_chunks[0][0])
809
+
810
+ for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
811
+ input_ids.extend(x[offset:])
812
+
813
+ if return_tensors is not None:
814
+ if return_tensors == "pt":
815
+ return torch.tensor(input_ids, dtype=torch.long)
816
+ raise ValueError(f"Unsupported tensor type: {return_tensors}")
817
+ return input_ids
818
+
819
+
820
+ def get_model_name_from_path(model_path):
821
+ model_path = model_path.strip("/")
822
+ model_paths = model_path.split("/")
823
+ if model_paths[-1].startswith("checkpoint-"):
824
+ return model_paths[-2] + "_" + model_paths[-1]
825
+ else:
826
+ return model_paths[-1]
827
+
828
+
829
+ class KeywordsStoppingCriteria(StoppingCriteria):
830
+ def __init__(self, keywords, tokenizer, input_ids):
831
+ self.keywords = keywords
832
+ self.keyword_ids = []
833
+ for keyword in keywords:
834
+ cur_keyword_ids = tokenizer(keyword).input_ids
835
+ if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
836
+ cur_keyword_ids = cur_keyword_ids[1:]
837
+ self.keyword_ids.append(torch.tensor(cur_keyword_ids))
838
+ self.tokenizer = tokenizer
839
+ self.start_len = input_ids.shape[1]
840
+
841
+ def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
842
+ assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
843
+ offset = min(output_ids.shape[1] - self.start_len, 3)
844
+ self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
845
+ for keyword_id in self.keyword_ids:
846
+ if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
847
+ return True
848
+ outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
849
+ for keyword in self.keywords:
850
+ if keyword in outputs:
851
+ return True
852
+ return False
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b28e4935375bd056b0a8a8756e151a79ab92b2e8f3eb28ceee0cb3607cbbac9c
3
+ size 4997418264
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41e2bb894136fffc6128c94f2458a7f4fa4263403d0d3b42cc43c6f08321afaf
3
+ size 4999754984
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9559bd7ed20929eeafba7793c9a8cca581fabf27e3ab18b598473a19e0978bfd
3
+ size 4998910488
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66338e387f62ebc1f4a480bcf30837b55f2561af2409fda64a41d716debd8176
3
+ size 1324572984
model.safetensors.index.json ADDED
@@ -0,0 +1,625 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16320578048
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.kv_a_proj_with_mqa.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.kv_a_proj_with_mqa.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.kv_b_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
19
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.self_attn.kv_a_proj_with_mqa.bias": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.kv_a_proj_with_mqa.weight": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.kv_b_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
31
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
32
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
41
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
43
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
53
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
55
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
65
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
67
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
74
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
77
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
79
+ "model.layers.14.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
86
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
89
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.15.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.15.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
98
+ "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
101
+ "model.layers.16.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
102
+ "model.layers.16.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
103
+ "model.layers.16.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
105
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
106
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
107
+ "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
108
+ "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
109
+ "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
110
+ "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.17.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.17.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.17.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
115
+ "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
117
+ "model.layers.17.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
118
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
121
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
122
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.18.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
124
+ "model.layers.18.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
125
+ "model.layers.18.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
126
+ "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
127
+ "model.layers.18.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
128
+ "model.layers.18.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
129
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
134
+ "model.layers.19.self_attn.kv_a_proj_with_mqa.bias": "model-00003-of-00004.safetensors",
135
+ "model.layers.19.self_attn.kv_a_proj_with_mqa.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.19.self_attn.kv_b_proj.weight": "model-00003-of-00004.safetensors",
137
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
141
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
142
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
143
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
144
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
145
+ "model.layers.2.self_attn.kv_a_proj_with_mqa.bias": "model-00001-of-00004.safetensors",
146
+ "model.layers.2.self_attn.kv_a_proj_with_mqa.weight": "model-00001-of-00004.safetensors",
147
+ "model.layers.2.self_attn.kv_b_proj.weight": "model-00001-of-00004.safetensors",
148
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
149
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
150
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
151
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
153
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
154
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
155
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
156
+ "model.layers.20.self_attn.kv_a_proj_with_mqa.bias": "model-00003-of-00004.safetensors",
157
+ "model.layers.20.self_attn.kv_a_proj_with_mqa.weight": "model-00003-of-00004.safetensors",
158
+ "model.layers.20.self_attn.kv_b_proj.weight": "model-00003-of-00004.safetensors",
159
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
160
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
161
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
162
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
163
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
164
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.21.self_attn.kv_a_proj_with_mqa.bias": "model-00003-of-00004.safetensors",
168
+ "model.layers.21.self_attn.kv_a_proj_with_mqa.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.21.self_attn.kv_b_proj.weight": "model-00003-of-00004.safetensors",
170
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
172
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
173
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
175
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.22.self_attn.kv_a_proj_with_mqa.bias": "model-00003-of-00004.safetensors",
179
+ "model.layers.22.self_attn.kv_a_proj_with_mqa.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.22.self_attn.kv_b_proj.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
182
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
183
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
185
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
187
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.23.self_attn.kv_a_proj_with_mqa.bias": "model-00003-of-00004.safetensors",
190
+ "model.layers.23.self_attn.kv_a_proj_with_mqa.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.23.self_attn.kv_b_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
197
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
199
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.24.self_attn.kv_a_proj_with_mqa.bias": "model-00003-of-00004.safetensors",
201
+ "model.layers.24.self_attn.kv_a_proj_with_mqa.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.24.self_attn.kv_b_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
205
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
206
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
209
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
211
+ "model.layers.25.self_attn.kv_a_proj_with_mqa.bias": "model-00003-of-00004.safetensors",
212
+ "model.layers.25.self_attn.kv_a_proj_with_mqa.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.25.self_attn.kv_b_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
216
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
218
+ "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
221
+ "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.26.self_attn.kv_a_proj_with_mqa.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.26.self_attn.kv_a_proj_with_mqa.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.26.self_attn.kv_b_proj.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
227
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
230
+ "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
233
+ "model.layers.27.self_attn.kv_a_proj_with_mqa.bias": "model-00003-of-00004.safetensors",
234
+ "model.layers.27.self_attn.kv_a_proj_with_mqa.weight": "model-00003-of-00004.safetensors",
235
+ "model.layers.27.self_attn.kv_b_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
237
+ "model.layers.27.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
238
+ "model.layers.27.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
240
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
241
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
242
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
243
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
244
+ "model.layers.3.self_attn.kv_a_proj_with_mqa.bias": "model-00001-of-00004.safetensors",
245
+ "model.layers.3.self_attn.kv_a_proj_with_mqa.weight": "model-00001-of-00004.safetensors",
246
+ "model.layers.3.self_attn.kv_b_proj.weight": "model-00001-of-00004.safetensors",
247
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
248
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
249
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
250
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
251
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
252
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
253
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
254
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
255
+ "model.layers.4.self_attn.kv_a_proj_with_mqa.bias": "model-00001-of-00004.safetensors",
256
+ "model.layers.4.self_attn.kv_a_proj_with_mqa.weight": "model-00001-of-00004.safetensors",
257
+ "model.layers.4.self_attn.kv_b_proj.weight": "model-00001-of-00004.safetensors",
258
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
259
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
260
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "model.layers.5.self_attn.kv_a_proj_with_mqa.bias": "model-00001-of-00004.safetensors",
267
+ "model.layers.5.self_attn.kv_a_proj_with_mqa.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.5.self_attn.kv_b_proj.weight": "model-00001-of-00004.safetensors",
269
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.6.self_attn.kv_a_proj_with_mqa.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.6.self_attn.kv_a_proj_with_mqa.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.6.self_attn.kv_b_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
281
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
282
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
283
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
285
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
286
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
288
+ "model.layers.7.self_attn.kv_a_proj_with_mqa.bias": "model-00001-of-00004.safetensors",
289
+ "model.layers.7.self_attn.kv_a_proj_with_mqa.weight": "model-00001-of-00004.safetensors",
290
+ "model.layers.7.self_attn.kv_b_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
295
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
296
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.8.self_attn.kv_a_proj_with_mqa.bias": "model-00001-of-00004.safetensors",
300
+ "model.layers.8.self_attn.kv_a_proj_with_mqa.weight": "model-00001-of-00004.safetensors",
301
+ "model.layers.8.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
302
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
304
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
305
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
307
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.9.self_attn.kv_a_proj_with_mqa.bias": "model-00002-of-00004.safetensors",
311
+ "model.layers.9.self_attn.kv_a_proj_with_mqa.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.9.self_attn.kv_b_proj.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
314
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
315
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
316
+ "model.mm_projector.mlp.0.bias": "model-00004-of-00004.safetensors",
317
+ "model.mm_projector.mlp.0.weight": "model-00004-of-00004.safetensors",
318
+ "model.mm_projector.mlp.2.bias": "model-00004-of-00004.safetensors",
319
+ "model.mm_projector.mlp.2.weight": "model-00004-of-00004.safetensors",
320
+ "model.norm.weight": "model-00003-of-00004.safetensors",
321
+ "model.vision_tower.vision_tower.encoder.blocks.0.attn.proj.bias": "model-00003-of-00004.safetensors",
322
+ "model.vision_tower.vision_tower.encoder.blocks.0.attn.proj.weight": "model-00003-of-00004.safetensors",
323
+ "model.vision_tower.vision_tower.encoder.blocks.0.attn.q_bias": "model-00003-of-00004.safetensors",
324
+ "model.vision_tower.vision_tower.encoder.blocks.0.attn.qkv.weight": "model-00003-of-00004.safetensors",
325
+ "model.vision_tower.vision_tower.encoder.blocks.0.attn.v_bias": "model-00003-of-00004.safetensors",
326
+ "model.vision_tower.vision_tower.encoder.blocks.0.mlp.fc1.bias": "model-00003-of-00004.safetensors",
327
+ "model.vision_tower.vision_tower.encoder.blocks.0.mlp.fc1.weight": "model-00003-of-00004.safetensors",
328
+ "model.vision_tower.vision_tower.encoder.blocks.0.mlp.fc2.bias": "model-00003-of-00004.safetensors",
329
+ "model.vision_tower.vision_tower.encoder.blocks.0.mlp.fc2.weight": "model-00003-of-00004.safetensors",
330
+ "model.vision_tower.vision_tower.encoder.blocks.0.norm1.bias": "model-00003-of-00004.safetensors",
331
+ "model.vision_tower.vision_tower.encoder.blocks.0.norm1.weight": "model-00003-of-00004.safetensors",
332
+ "model.vision_tower.vision_tower.encoder.blocks.0.norm2.bias": "model-00003-of-00004.safetensors",
333
+ "model.vision_tower.vision_tower.encoder.blocks.0.norm2.weight": "model-00003-of-00004.safetensors",
334
+ "model.vision_tower.vision_tower.encoder.blocks.1.attn.proj.bias": "model-00003-of-00004.safetensors",
335
+ "model.vision_tower.vision_tower.encoder.blocks.1.attn.proj.weight": "model-00003-of-00004.safetensors",
336
+ "model.vision_tower.vision_tower.encoder.blocks.1.attn.q_bias": "model-00003-of-00004.safetensors",
337
+ "model.vision_tower.vision_tower.encoder.blocks.1.attn.qkv.weight": "model-00003-of-00004.safetensors",
338
+ "model.vision_tower.vision_tower.encoder.blocks.1.attn.v_bias": "model-00003-of-00004.safetensors",
339
+ "model.vision_tower.vision_tower.encoder.blocks.1.mlp.fc1.bias": "model-00003-of-00004.safetensors",
340
+ "model.vision_tower.vision_tower.encoder.blocks.1.mlp.fc1.weight": "model-00003-of-00004.safetensors",
341
+ "model.vision_tower.vision_tower.encoder.blocks.1.mlp.fc2.bias": "model-00003-of-00004.safetensors",
342
+ "model.vision_tower.vision_tower.encoder.blocks.1.mlp.fc2.weight": "model-00003-of-00004.safetensors",
343
+ "model.vision_tower.vision_tower.encoder.blocks.1.norm1.bias": "model-00003-of-00004.safetensors",
344
+ "model.vision_tower.vision_tower.encoder.blocks.1.norm1.weight": "model-00003-of-00004.safetensors",
345
+ "model.vision_tower.vision_tower.encoder.blocks.1.norm2.bias": "model-00003-of-00004.safetensors",
346
+ "model.vision_tower.vision_tower.encoder.blocks.1.norm2.weight": "model-00003-of-00004.safetensors",
347
+ "model.vision_tower.vision_tower.encoder.blocks.10.attn.proj.bias": "model-00003-of-00004.safetensors",
348
+ "model.vision_tower.vision_tower.encoder.blocks.10.attn.proj.weight": "model-00003-of-00004.safetensors",
349
+ "model.vision_tower.vision_tower.encoder.blocks.10.attn.q_bias": "model-00003-of-00004.safetensors",
350
+ "model.vision_tower.vision_tower.encoder.blocks.10.attn.qkv.weight": "model-00003-of-00004.safetensors",
351
+ "model.vision_tower.vision_tower.encoder.blocks.10.attn.v_bias": "model-00003-of-00004.safetensors",
352
+ "model.vision_tower.vision_tower.encoder.blocks.10.mlp.fc1.bias": "model-00003-of-00004.safetensors",
353
+ "model.vision_tower.vision_tower.encoder.blocks.10.mlp.fc1.weight": "model-00003-of-00004.safetensors",
354
+ "model.vision_tower.vision_tower.encoder.blocks.10.mlp.fc2.bias": "model-00003-of-00004.safetensors",
355
+ "model.vision_tower.vision_tower.encoder.blocks.10.mlp.fc2.weight": "model-00003-of-00004.safetensors",
356
+ "model.vision_tower.vision_tower.encoder.blocks.10.norm1.bias": "model-00003-of-00004.safetensors",
357
+ "model.vision_tower.vision_tower.encoder.blocks.10.norm1.weight": "model-00003-of-00004.safetensors",
358
+ "model.vision_tower.vision_tower.encoder.blocks.10.norm2.bias": "model-00003-of-00004.safetensors",
359
+ "model.vision_tower.vision_tower.encoder.blocks.10.norm2.weight": "model-00003-of-00004.safetensors",
360
+ "model.vision_tower.vision_tower.encoder.blocks.11.attn.proj.bias": "model-00003-of-00004.safetensors",
361
+ "model.vision_tower.vision_tower.encoder.blocks.11.attn.proj.weight": "model-00003-of-00004.safetensors",
362
+ "model.vision_tower.vision_tower.encoder.blocks.11.attn.q_bias": "model-00003-of-00004.safetensors",
363
+ "model.vision_tower.vision_tower.encoder.blocks.11.attn.qkv.weight": "model-00003-of-00004.safetensors",
364
+ "model.vision_tower.vision_tower.encoder.blocks.11.attn.v_bias": "model-00003-of-00004.safetensors",
365
+ "model.vision_tower.vision_tower.encoder.blocks.11.mlp.fc1.bias": "model-00003-of-00004.safetensors",
366
+ "model.vision_tower.vision_tower.encoder.blocks.11.mlp.fc1.weight": "model-00003-of-00004.safetensors",
367
+ "model.vision_tower.vision_tower.encoder.blocks.11.mlp.fc2.bias": "model-00003-of-00004.safetensors",
368
+ "model.vision_tower.vision_tower.encoder.blocks.11.mlp.fc2.weight": "model-00003-of-00004.safetensors",
369
+ "model.vision_tower.vision_tower.encoder.blocks.11.norm1.bias": "model-00003-of-00004.safetensors",
370
+ "model.vision_tower.vision_tower.encoder.blocks.11.norm1.weight": "model-00003-of-00004.safetensors",
371
+ "model.vision_tower.vision_tower.encoder.blocks.11.norm2.bias": "model-00003-of-00004.safetensors",
372
+ "model.vision_tower.vision_tower.encoder.blocks.11.norm2.weight": "model-00003-of-00004.safetensors",
373
+ "model.vision_tower.vision_tower.encoder.blocks.12.attn.proj.bias": "model-00003-of-00004.safetensors",
374
+ "model.vision_tower.vision_tower.encoder.blocks.12.attn.proj.weight": "model-00003-of-00004.safetensors",
375
+ "model.vision_tower.vision_tower.encoder.blocks.12.attn.q_bias": "model-00003-of-00004.safetensors",
376
+ "model.vision_tower.vision_tower.encoder.blocks.12.attn.qkv.weight": "model-00003-of-00004.safetensors",
377
+ "model.vision_tower.vision_tower.encoder.blocks.12.attn.v_bias": "model-00003-of-00004.safetensors",
378
+ "model.vision_tower.vision_tower.encoder.blocks.12.mlp.fc1.bias": "model-00003-of-00004.safetensors",
379
+ "model.vision_tower.vision_tower.encoder.blocks.12.mlp.fc1.weight": "model-00003-of-00004.safetensors",
380
+ "model.vision_tower.vision_tower.encoder.blocks.12.mlp.fc2.bias": "model-00003-of-00004.safetensors",
381
+ "model.vision_tower.vision_tower.encoder.blocks.12.mlp.fc2.weight": "model-00003-of-00004.safetensors",
382
+ "model.vision_tower.vision_tower.encoder.blocks.12.norm1.bias": "model-00003-of-00004.safetensors",
383
+ "model.vision_tower.vision_tower.encoder.blocks.12.norm1.weight": "model-00003-of-00004.safetensors",
384
+ "model.vision_tower.vision_tower.encoder.blocks.12.norm2.bias": "model-00003-of-00004.safetensors",
385
+ "model.vision_tower.vision_tower.encoder.blocks.12.norm2.weight": "model-00003-of-00004.safetensors",
386
+ "model.vision_tower.vision_tower.encoder.blocks.13.attn.proj.bias": "model-00003-of-00004.safetensors",
387
+ "model.vision_tower.vision_tower.encoder.blocks.13.attn.proj.weight": "model-00003-of-00004.safetensors",
388
+ "model.vision_tower.vision_tower.encoder.blocks.13.attn.q_bias": "model-00003-of-00004.safetensors",
389
+ "model.vision_tower.vision_tower.encoder.blocks.13.attn.qkv.weight": "model-00003-of-00004.safetensors",
390
+ "model.vision_tower.vision_tower.encoder.blocks.13.attn.v_bias": "model-00003-of-00004.safetensors",
391
+ "model.vision_tower.vision_tower.encoder.blocks.13.mlp.fc1.bias": "model-00003-of-00004.safetensors",
392
+ "model.vision_tower.vision_tower.encoder.blocks.13.mlp.fc1.weight": "model-00003-of-00004.safetensors",
393
+ "model.vision_tower.vision_tower.encoder.blocks.13.mlp.fc2.bias": "model-00003-of-00004.safetensors",
394
+ "model.vision_tower.vision_tower.encoder.blocks.13.mlp.fc2.weight": "model-00003-of-00004.safetensors",
395
+ "model.vision_tower.vision_tower.encoder.blocks.13.norm1.bias": "model-00003-of-00004.safetensors",
396
+ "model.vision_tower.vision_tower.encoder.blocks.13.norm1.weight": "model-00003-of-00004.safetensors",
397
+ "model.vision_tower.vision_tower.encoder.blocks.13.norm2.bias": "model-00003-of-00004.safetensors",
398
+ "model.vision_tower.vision_tower.encoder.blocks.13.norm2.weight": "model-00003-of-00004.safetensors",
399
+ "model.vision_tower.vision_tower.encoder.blocks.14.attn.proj.bias": "model-00003-of-00004.safetensors",
400
+ "model.vision_tower.vision_tower.encoder.blocks.14.attn.proj.weight": "model-00003-of-00004.safetensors",
401
+ "model.vision_tower.vision_tower.encoder.blocks.14.attn.q_bias": "model-00003-of-00004.safetensors",
402
+ "model.vision_tower.vision_tower.encoder.blocks.14.attn.qkv.weight": "model-00003-of-00004.safetensors",
403
+ "model.vision_tower.vision_tower.encoder.blocks.14.attn.v_bias": "model-00003-of-00004.safetensors",
404
+ "model.vision_tower.vision_tower.encoder.blocks.14.mlp.fc1.bias": "model-00003-of-00004.safetensors",
405
+ "model.vision_tower.vision_tower.encoder.blocks.14.mlp.fc1.weight": "model-00003-of-00004.safetensors",
406
+ "model.vision_tower.vision_tower.encoder.blocks.14.mlp.fc2.bias": "model-00003-of-00004.safetensors",
407
+ "model.vision_tower.vision_tower.encoder.blocks.14.mlp.fc2.weight": "model-00003-of-00004.safetensors",
408
+ "model.vision_tower.vision_tower.encoder.blocks.14.norm1.bias": "model-00003-of-00004.safetensors",
409
+ "model.vision_tower.vision_tower.encoder.blocks.14.norm1.weight": "model-00003-of-00004.safetensors",
410
+ "model.vision_tower.vision_tower.encoder.blocks.14.norm2.bias": "model-00003-of-00004.safetensors",
411
+ "model.vision_tower.vision_tower.encoder.blocks.14.norm2.weight": "model-00003-of-00004.safetensors",
412
+ "model.vision_tower.vision_tower.encoder.blocks.15.attn.proj.bias": "model-00004-of-00004.safetensors",
413
+ "model.vision_tower.vision_tower.encoder.blocks.15.attn.proj.weight": "model-00004-of-00004.safetensors",
414
+ "model.vision_tower.vision_tower.encoder.blocks.15.attn.q_bias": "model-00003-of-00004.safetensors",
415
+ "model.vision_tower.vision_tower.encoder.blocks.15.attn.qkv.weight": "model-00004-of-00004.safetensors",
416
+ "model.vision_tower.vision_tower.encoder.blocks.15.attn.v_bias": "model-00003-of-00004.safetensors",
417
+ "model.vision_tower.vision_tower.encoder.blocks.15.mlp.fc1.bias": "model-00004-of-00004.safetensors",
418
+ "model.vision_tower.vision_tower.encoder.blocks.15.mlp.fc1.weight": "model-00004-of-00004.safetensors",
419
+ "model.vision_tower.vision_tower.encoder.blocks.15.mlp.fc2.bias": "model-00004-of-00004.safetensors",
420
+ "model.vision_tower.vision_tower.encoder.blocks.15.mlp.fc2.weight": "model-00004-of-00004.safetensors",
421
+ "model.vision_tower.vision_tower.encoder.blocks.15.norm1.bias": "model-00003-of-00004.safetensors",
422
+ "model.vision_tower.vision_tower.encoder.blocks.15.norm1.weight": "model-00003-of-00004.safetensors",
423
+ "model.vision_tower.vision_tower.encoder.blocks.15.norm2.bias": "model-00004-of-00004.safetensors",
424
+ "model.vision_tower.vision_tower.encoder.blocks.15.norm2.weight": "model-00004-of-00004.safetensors",
425
+ "model.vision_tower.vision_tower.encoder.blocks.16.attn.proj.bias": "model-00004-of-00004.safetensors",
426
+ "model.vision_tower.vision_tower.encoder.blocks.16.attn.proj.weight": "model-00004-of-00004.safetensors",
427
+ "model.vision_tower.vision_tower.encoder.blocks.16.attn.q_bias": "model-00004-of-00004.safetensors",
428
+ "model.vision_tower.vision_tower.encoder.blocks.16.attn.qkv.weight": "model-00004-of-00004.safetensors",
429
+ "model.vision_tower.vision_tower.encoder.blocks.16.attn.v_bias": "model-00004-of-00004.safetensors",
430
+ "model.vision_tower.vision_tower.encoder.blocks.16.mlp.fc1.bias": "model-00004-of-00004.safetensors",
431
+ "model.vision_tower.vision_tower.encoder.blocks.16.mlp.fc1.weight": "model-00004-of-00004.safetensors",
432
+ "model.vision_tower.vision_tower.encoder.blocks.16.mlp.fc2.bias": "model-00004-of-00004.safetensors",
433
+ "model.vision_tower.vision_tower.encoder.blocks.16.mlp.fc2.weight": "model-00004-of-00004.safetensors",
434
+ "model.vision_tower.vision_tower.encoder.blocks.16.norm1.bias": "model-00004-of-00004.safetensors",
435
+ "model.vision_tower.vision_tower.encoder.blocks.16.norm1.weight": "model-00004-of-00004.safetensors",
436
+ "model.vision_tower.vision_tower.encoder.blocks.16.norm2.bias": "model-00004-of-00004.safetensors",
437
+ "model.vision_tower.vision_tower.encoder.blocks.16.norm2.weight": "model-00004-of-00004.safetensors",
438
+ "model.vision_tower.vision_tower.encoder.blocks.17.attn.proj.bias": "model-00004-of-00004.safetensors",
439
+ "model.vision_tower.vision_tower.encoder.blocks.17.attn.proj.weight": "model-00004-of-00004.safetensors",
440
+ "model.vision_tower.vision_tower.encoder.blocks.17.attn.q_bias": "model-00004-of-00004.safetensors",
441
+ "model.vision_tower.vision_tower.encoder.blocks.17.attn.qkv.weight": "model-00004-of-00004.safetensors",
442
+ "model.vision_tower.vision_tower.encoder.blocks.17.attn.v_bias": "model-00004-of-00004.safetensors",
443
+ "model.vision_tower.vision_tower.encoder.blocks.17.mlp.fc1.bias": "model-00004-of-00004.safetensors",
444
+ "model.vision_tower.vision_tower.encoder.blocks.17.mlp.fc1.weight": "model-00004-of-00004.safetensors",
445
+ "model.vision_tower.vision_tower.encoder.blocks.17.mlp.fc2.bias": "model-00004-of-00004.safetensors",
446
+ "model.vision_tower.vision_tower.encoder.blocks.17.mlp.fc2.weight": "model-00004-of-00004.safetensors",
447
+ "model.vision_tower.vision_tower.encoder.blocks.17.norm1.bias": "model-00004-of-00004.safetensors",
448
+ "model.vision_tower.vision_tower.encoder.blocks.17.norm1.weight": "model-00004-of-00004.safetensors",
449
+ "model.vision_tower.vision_tower.encoder.blocks.17.norm2.bias": "model-00004-of-00004.safetensors",
450
+ "model.vision_tower.vision_tower.encoder.blocks.17.norm2.weight": "model-00004-of-00004.safetensors",
451
+ "model.vision_tower.vision_tower.encoder.blocks.18.attn.proj.bias": "model-00004-of-00004.safetensors",
452
+ "model.vision_tower.vision_tower.encoder.blocks.18.attn.proj.weight": "model-00004-of-00004.safetensors",
453
+ "model.vision_tower.vision_tower.encoder.blocks.18.attn.q_bias": "model-00004-of-00004.safetensors",
454
+ "model.vision_tower.vision_tower.encoder.blocks.18.attn.qkv.weight": "model-00004-of-00004.safetensors",
455
+ "model.vision_tower.vision_tower.encoder.blocks.18.attn.v_bias": "model-00004-of-00004.safetensors",
456
+ "model.vision_tower.vision_tower.encoder.blocks.18.mlp.fc1.bias": "model-00004-of-00004.safetensors",
457
+ "model.vision_tower.vision_tower.encoder.blocks.18.mlp.fc1.weight": "model-00004-of-00004.safetensors",
458
+ "model.vision_tower.vision_tower.encoder.blocks.18.mlp.fc2.bias": "model-00004-of-00004.safetensors",
459
+ "model.vision_tower.vision_tower.encoder.blocks.18.mlp.fc2.weight": "model-00004-of-00004.safetensors",
460
+ "model.vision_tower.vision_tower.encoder.blocks.18.norm1.bias": "model-00004-of-00004.safetensors",
461
+ "model.vision_tower.vision_tower.encoder.blocks.18.norm1.weight": "model-00004-of-00004.safetensors",
462
+ "model.vision_tower.vision_tower.encoder.blocks.18.norm2.bias": "model-00004-of-00004.safetensors",
463
+ "model.vision_tower.vision_tower.encoder.blocks.18.norm2.weight": "model-00004-of-00004.safetensors",
464
+ "model.vision_tower.vision_tower.encoder.blocks.19.attn.proj.bias": "model-00004-of-00004.safetensors",
465
+ "model.vision_tower.vision_tower.encoder.blocks.19.attn.proj.weight": "model-00004-of-00004.safetensors",
466
+ "model.vision_tower.vision_tower.encoder.blocks.19.attn.q_bias": "model-00004-of-00004.safetensors",
467
+ "model.vision_tower.vision_tower.encoder.blocks.19.attn.qkv.weight": "model-00004-of-00004.safetensors",
468
+ "model.vision_tower.vision_tower.encoder.blocks.19.attn.v_bias": "model-00004-of-00004.safetensors",
469
+ "model.vision_tower.vision_tower.encoder.blocks.19.mlp.fc1.bias": "model-00004-of-00004.safetensors",
470
+ "model.vision_tower.vision_tower.encoder.blocks.19.mlp.fc1.weight": "model-00004-of-00004.safetensors",
471
+ "model.vision_tower.vision_tower.encoder.blocks.19.mlp.fc2.bias": "model-00004-of-00004.safetensors",
472
+ "model.vision_tower.vision_tower.encoder.blocks.19.mlp.fc2.weight": "model-00004-of-00004.safetensors",
473
+ "model.vision_tower.vision_tower.encoder.blocks.19.norm1.bias": "model-00004-of-00004.safetensors",
474
+ "model.vision_tower.vision_tower.encoder.blocks.19.norm1.weight": "model-00004-of-00004.safetensors",
475
+ "model.vision_tower.vision_tower.encoder.blocks.19.norm2.bias": "model-00004-of-00004.safetensors",
476
+ "model.vision_tower.vision_tower.encoder.blocks.19.norm2.weight": "model-00004-of-00004.safetensors",
477
+ "model.vision_tower.vision_tower.encoder.blocks.2.attn.proj.bias": "model-00003-of-00004.safetensors",
478
+ "model.vision_tower.vision_tower.encoder.blocks.2.attn.proj.weight": "model-00003-of-00004.safetensors",
479
+ "model.vision_tower.vision_tower.encoder.blocks.2.attn.q_bias": "model-00003-of-00004.safetensors",
480
+ "model.vision_tower.vision_tower.encoder.blocks.2.attn.qkv.weight": "model-00003-of-00004.safetensors",
481
+ "model.vision_tower.vision_tower.encoder.blocks.2.attn.v_bias": "model-00003-of-00004.safetensors",
482
+ "model.vision_tower.vision_tower.encoder.blocks.2.mlp.fc1.bias": "model-00003-of-00004.safetensors",
483
+ "model.vision_tower.vision_tower.encoder.blocks.2.mlp.fc1.weight": "model-00003-of-00004.safetensors",
484
+ "model.vision_tower.vision_tower.encoder.blocks.2.mlp.fc2.bias": "model-00003-of-00004.safetensors",
485
+ "model.vision_tower.vision_tower.encoder.blocks.2.mlp.fc2.weight": "model-00003-of-00004.safetensors",
486
+ "model.vision_tower.vision_tower.encoder.blocks.2.norm1.bias": "model-00003-of-00004.safetensors",
487
+ "model.vision_tower.vision_tower.encoder.blocks.2.norm1.weight": "model-00003-of-00004.safetensors",
488
+ "model.vision_tower.vision_tower.encoder.blocks.2.norm2.bias": "model-00003-of-00004.safetensors",
489
+ "model.vision_tower.vision_tower.encoder.blocks.2.norm2.weight": "model-00003-of-00004.safetensors",
490
+ "model.vision_tower.vision_tower.encoder.blocks.20.attn.proj.bias": "model-00004-of-00004.safetensors",
491
+ "model.vision_tower.vision_tower.encoder.blocks.20.attn.proj.weight": "model-00004-of-00004.safetensors",
492
+ "model.vision_tower.vision_tower.encoder.blocks.20.attn.q_bias": "model-00004-of-00004.safetensors",
493
+ "model.vision_tower.vision_tower.encoder.blocks.20.attn.qkv.weight": "model-00004-of-00004.safetensors",
494
+ "model.vision_tower.vision_tower.encoder.blocks.20.attn.v_bias": "model-00004-of-00004.safetensors",
495
+ "model.vision_tower.vision_tower.encoder.blocks.20.mlp.fc1.bias": "model-00004-of-00004.safetensors",
496
+ "model.vision_tower.vision_tower.encoder.blocks.20.mlp.fc1.weight": "model-00004-of-00004.safetensors",
497
+ "model.vision_tower.vision_tower.encoder.blocks.20.mlp.fc2.bias": "model-00004-of-00004.safetensors",
498
+ "model.vision_tower.vision_tower.encoder.blocks.20.mlp.fc2.weight": "model-00004-of-00004.safetensors",
499
+ "model.vision_tower.vision_tower.encoder.blocks.20.norm1.bias": "model-00004-of-00004.safetensors",
500
+ "model.vision_tower.vision_tower.encoder.blocks.20.norm1.weight": "model-00004-of-00004.safetensors",
501
+ "model.vision_tower.vision_tower.encoder.blocks.20.norm2.bias": "model-00004-of-00004.safetensors",
502
+ "model.vision_tower.vision_tower.encoder.blocks.20.norm2.weight": "model-00004-of-00004.safetensors",
503
+ "model.vision_tower.vision_tower.encoder.blocks.21.attn.proj.bias": "model-00004-of-00004.safetensors",
504
+ "model.vision_tower.vision_tower.encoder.blocks.21.attn.proj.weight": "model-00004-of-00004.safetensors",
505
+ "model.vision_tower.vision_tower.encoder.blocks.21.attn.q_bias": "model-00004-of-00004.safetensors",
506
+ "model.vision_tower.vision_tower.encoder.blocks.21.attn.qkv.weight": "model-00004-of-00004.safetensors",
507
+ "model.vision_tower.vision_tower.encoder.blocks.21.attn.v_bias": "model-00004-of-00004.safetensors",
508
+ "model.vision_tower.vision_tower.encoder.blocks.21.mlp.fc1.bias": "model-00004-of-00004.safetensors",
509
+ "model.vision_tower.vision_tower.encoder.blocks.21.mlp.fc1.weight": "model-00004-of-00004.safetensors",
510
+ "model.vision_tower.vision_tower.encoder.blocks.21.mlp.fc2.bias": "model-00004-of-00004.safetensors",
511
+ "model.vision_tower.vision_tower.encoder.blocks.21.mlp.fc2.weight": "model-00004-of-00004.safetensors",
512
+ "model.vision_tower.vision_tower.encoder.blocks.21.norm1.bias": "model-00004-of-00004.safetensors",
513
+ "model.vision_tower.vision_tower.encoder.blocks.21.norm1.weight": "model-00004-of-00004.safetensors",
514
+ "model.vision_tower.vision_tower.encoder.blocks.21.norm2.bias": "model-00004-of-00004.safetensors",
515
+ "model.vision_tower.vision_tower.encoder.blocks.21.norm2.weight": "model-00004-of-00004.safetensors",
516
+ "model.vision_tower.vision_tower.encoder.blocks.22.attn.proj.bias": "model-00004-of-00004.safetensors",
517
+ "model.vision_tower.vision_tower.encoder.blocks.22.attn.proj.weight": "model-00004-of-00004.safetensors",
518
+ "model.vision_tower.vision_tower.encoder.blocks.22.attn.q_bias": "model-00004-of-00004.safetensors",
519
+ "model.vision_tower.vision_tower.encoder.blocks.22.attn.qkv.weight": "model-00004-of-00004.safetensors",
520
+ "model.vision_tower.vision_tower.encoder.blocks.22.attn.v_bias": "model-00004-of-00004.safetensors",
521
+ "model.vision_tower.vision_tower.encoder.blocks.22.mlp.fc1.bias": "model-00004-of-00004.safetensors",
522
+ "model.vision_tower.vision_tower.encoder.blocks.22.mlp.fc1.weight": "model-00004-of-00004.safetensors",
523
+ "model.vision_tower.vision_tower.encoder.blocks.22.mlp.fc2.bias": "model-00004-of-00004.safetensors",
524
+ "model.vision_tower.vision_tower.encoder.blocks.22.mlp.fc2.weight": "model-00004-of-00004.safetensors",
525
+ "model.vision_tower.vision_tower.encoder.blocks.22.norm1.bias": "model-00004-of-00004.safetensors",
526
+ "model.vision_tower.vision_tower.encoder.blocks.22.norm1.weight": "model-00004-of-00004.safetensors",
527
+ "model.vision_tower.vision_tower.encoder.blocks.22.norm2.bias": "model-00004-of-00004.safetensors",
528
+ "model.vision_tower.vision_tower.encoder.blocks.22.norm2.weight": "model-00004-of-00004.safetensors",
529
+ "model.vision_tower.vision_tower.encoder.blocks.3.attn.proj.bias": "model-00003-of-00004.safetensors",
530
+ "model.vision_tower.vision_tower.encoder.blocks.3.attn.proj.weight": "model-00003-of-00004.safetensors",
531
+ "model.vision_tower.vision_tower.encoder.blocks.3.attn.q_bias": "model-00003-of-00004.safetensors",
532
+ "model.vision_tower.vision_tower.encoder.blocks.3.attn.qkv.weight": "model-00003-of-00004.safetensors",
533
+ "model.vision_tower.vision_tower.encoder.blocks.3.attn.v_bias": "model-00003-of-00004.safetensors",
534
+ "model.vision_tower.vision_tower.encoder.blocks.3.mlp.fc1.bias": "model-00003-of-00004.safetensors",
535
+ "model.vision_tower.vision_tower.encoder.blocks.3.mlp.fc1.weight": "model-00003-of-00004.safetensors",
536
+ "model.vision_tower.vision_tower.encoder.blocks.3.mlp.fc2.bias": "model-00003-of-00004.safetensors",
537
+ "model.vision_tower.vision_tower.encoder.blocks.3.mlp.fc2.weight": "model-00003-of-00004.safetensors",
538
+ "model.vision_tower.vision_tower.encoder.blocks.3.norm1.bias": "model-00003-of-00004.safetensors",
539
+ "model.vision_tower.vision_tower.encoder.blocks.3.norm1.weight": "model-00003-of-00004.safetensors",
540
+ "model.vision_tower.vision_tower.encoder.blocks.3.norm2.bias": "model-00003-of-00004.safetensors",
541
+ "model.vision_tower.vision_tower.encoder.blocks.3.norm2.weight": "model-00003-of-00004.safetensors",
542
+ "model.vision_tower.vision_tower.encoder.blocks.4.attn.proj.bias": "model-00003-of-00004.safetensors",
543
+ "model.vision_tower.vision_tower.encoder.blocks.4.attn.proj.weight": "model-00003-of-00004.safetensors",
544
+ "model.vision_tower.vision_tower.encoder.blocks.4.attn.q_bias": "model-00003-of-00004.safetensors",
545
+ "model.vision_tower.vision_tower.encoder.blocks.4.attn.qkv.weight": "model-00003-of-00004.safetensors",
546
+ "model.vision_tower.vision_tower.encoder.blocks.4.attn.v_bias": "model-00003-of-00004.safetensors",
547
+ "model.vision_tower.vision_tower.encoder.blocks.4.mlp.fc1.bias": "model-00003-of-00004.safetensors",
548
+ "model.vision_tower.vision_tower.encoder.blocks.4.mlp.fc1.weight": "model-00003-of-00004.safetensors",
549
+ "model.vision_tower.vision_tower.encoder.blocks.4.mlp.fc2.bias": "model-00003-of-00004.safetensors",
550
+ "model.vision_tower.vision_tower.encoder.blocks.4.mlp.fc2.weight": "model-00003-of-00004.safetensors",
551
+ "model.vision_tower.vision_tower.encoder.blocks.4.norm1.bias": "model-00003-of-00004.safetensors",
552
+ "model.vision_tower.vision_tower.encoder.blocks.4.norm1.weight": "model-00003-of-00004.safetensors",
553
+ "model.vision_tower.vision_tower.encoder.blocks.4.norm2.bias": "model-00003-of-00004.safetensors",
554
+ "model.vision_tower.vision_tower.encoder.blocks.4.norm2.weight": "model-00003-of-00004.safetensors",
555
+ "model.vision_tower.vision_tower.encoder.blocks.5.attn.proj.bias": "model-00003-of-00004.safetensors",
556
+ "model.vision_tower.vision_tower.encoder.blocks.5.attn.proj.weight": "model-00003-of-00004.safetensors",
557
+ "model.vision_tower.vision_tower.encoder.blocks.5.attn.q_bias": "model-00003-of-00004.safetensors",
558
+ "model.vision_tower.vision_tower.encoder.blocks.5.attn.qkv.weight": "model-00003-of-00004.safetensors",
559
+ "model.vision_tower.vision_tower.encoder.blocks.5.attn.v_bias": "model-00003-of-00004.safetensors",
560
+ "model.vision_tower.vision_tower.encoder.blocks.5.mlp.fc1.bias": "model-00003-of-00004.safetensors",
561
+ "model.vision_tower.vision_tower.encoder.blocks.5.mlp.fc1.weight": "model-00003-of-00004.safetensors",
562
+ "model.vision_tower.vision_tower.encoder.blocks.5.mlp.fc2.bias": "model-00003-of-00004.safetensors",
563
+ "model.vision_tower.vision_tower.encoder.blocks.5.mlp.fc2.weight": "model-00003-of-00004.safetensors",
564
+ "model.vision_tower.vision_tower.encoder.blocks.5.norm1.bias": "model-00003-of-00004.safetensors",
565
+ "model.vision_tower.vision_tower.encoder.blocks.5.norm1.weight": "model-00003-of-00004.safetensors",
566
+ "model.vision_tower.vision_tower.encoder.blocks.5.norm2.bias": "model-00003-of-00004.safetensors",
567
+ "model.vision_tower.vision_tower.encoder.blocks.5.norm2.weight": "model-00003-of-00004.safetensors",
568
+ "model.vision_tower.vision_tower.encoder.blocks.6.attn.proj.bias": "model-00003-of-00004.safetensors",
569
+ "model.vision_tower.vision_tower.encoder.blocks.6.attn.proj.weight": "model-00003-of-00004.safetensors",
570
+ "model.vision_tower.vision_tower.encoder.blocks.6.attn.q_bias": "model-00003-of-00004.safetensors",
571
+ "model.vision_tower.vision_tower.encoder.blocks.6.attn.qkv.weight": "model-00003-of-00004.safetensors",
572
+ "model.vision_tower.vision_tower.encoder.blocks.6.attn.v_bias": "model-00003-of-00004.safetensors",
573
+ "model.vision_tower.vision_tower.encoder.blocks.6.mlp.fc1.bias": "model-00003-of-00004.safetensors",
574
+ "model.vision_tower.vision_tower.encoder.blocks.6.mlp.fc1.weight": "model-00003-of-00004.safetensors",
575
+ "model.vision_tower.vision_tower.encoder.blocks.6.mlp.fc2.bias": "model-00003-of-00004.safetensors",
576
+ "model.vision_tower.vision_tower.encoder.blocks.6.mlp.fc2.weight": "model-00003-of-00004.safetensors",
577
+ "model.vision_tower.vision_tower.encoder.blocks.6.norm1.bias": "model-00003-of-00004.safetensors",
578
+ "model.vision_tower.vision_tower.encoder.blocks.6.norm1.weight": "model-00003-of-00004.safetensors",
579
+ "model.vision_tower.vision_tower.encoder.blocks.6.norm2.bias": "model-00003-of-00004.safetensors",
580
+ "model.vision_tower.vision_tower.encoder.blocks.6.norm2.weight": "model-00003-of-00004.safetensors",
581
+ "model.vision_tower.vision_tower.encoder.blocks.7.attn.proj.bias": "model-00003-of-00004.safetensors",
582
+ "model.vision_tower.vision_tower.encoder.blocks.7.attn.proj.weight": "model-00003-of-00004.safetensors",
583
+ "model.vision_tower.vision_tower.encoder.blocks.7.attn.q_bias": "model-00003-of-00004.safetensors",
584
+ "model.vision_tower.vision_tower.encoder.blocks.7.attn.qkv.weight": "model-00003-of-00004.safetensors",
585
+ "model.vision_tower.vision_tower.encoder.blocks.7.attn.v_bias": "model-00003-of-00004.safetensors",
586
+ "model.vision_tower.vision_tower.encoder.blocks.7.mlp.fc1.bias": "model-00003-of-00004.safetensors",
587
+ "model.vision_tower.vision_tower.encoder.blocks.7.mlp.fc1.weight": "model-00003-of-00004.safetensors",
588
+ "model.vision_tower.vision_tower.encoder.blocks.7.mlp.fc2.bias": "model-00003-of-00004.safetensors",
589
+ "model.vision_tower.vision_tower.encoder.blocks.7.mlp.fc2.weight": "model-00003-of-00004.safetensors",
590
+ "model.vision_tower.vision_tower.encoder.blocks.7.norm1.bias": "model-00003-of-00004.safetensors",
591
+ "model.vision_tower.vision_tower.encoder.blocks.7.norm1.weight": "model-00003-of-00004.safetensors",
592
+ "model.vision_tower.vision_tower.encoder.blocks.7.norm2.bias": "model-00003-of-00004.safetensors",
593
+ "model.vision_tower.vision_tower.encoder.blocks.7.norm2.weight": "model-00003-of-00004.safetensors",
594
+ "model.vision_tower.vision_tower.encoder.blocks.8.attn.proj.bias": "model-00003-of-00004.safetensors",
595
+ "model.vision_tower.vision_tower.encoder.blocks.8.attn.proj.weight": "model-00003-of-00004.safetensors",
596
+ "model.vision_tower.vision_tower.encoder.blocks.8.attn.q_bias": "model-00003-of-00004.safetensors",
597
+ "model.vision_tower.vision_tower.encoder.blocks.8.attn.qkv.weight": "model-00003-of-00004.safetensors",
598
+ "model.vision_tower.vision_tower.encoder.blocks.8.attn.v_bias": "model-00003-of-00004.safetensors",
599
+ "model.vision_tower.vision_tower.encoder.blocks.8.mlp.fc1.bias": "model-00003-of-00004.safetensors",
600
+ "model.vision_tower.vision_tower.encoder.blocks.8.mlp.fc1.weight": "model-00003-of-00004.safetensors",
601
+ "model.vision_tower.vision_tower.encoder.blocks.8.mlp.fc2.bias": "model-00003-of-00004.safetensors",
602
+ "model.vision_tower.vision_tower.encoder.blocks.8.mlp.fc2.weight": "model-00003-of-00004.safetensors",
603
+ "model.vision_tower.vision_tower.encoder.blocks.8.norm1.bias": "model-00003-of-00004.safetensors",
604
+ "model.vision_tower.vision_tower.encoder.blocks.8.norm1.weight": "model-00003-of-00004.safetensors",
605
+ "model.vision_tower.vision_tower.encoder.blocks.8.norm2.bias": "model-00003-of-00004.safetensors",
606
+ "model.vision_tower.vision_tower.encoder.blocks.8.norm2.weight": "model-00003-of-00004.safetensors",
607
+ "model.vision_tower.vision_tower.encoder.blocks.9.attn.proj.bias": "model-00003-of-00004.safetensors",
608
+ "model.vision_tower.vision_tower.encoder.blocks.9.attn.proj.weight": "model-00003-of-00004.safetensors",
609
+ "model.vision_tower.vision_tower.encoder.blocks.9.attn.q_bias": "model-00003-of-00004.safetensors",
610
+ "model.vision_tower.vision_tower.encoder.blocks.9.attn.qkv.weight": "model-00003-of-00004.safetensors",
611
+ "model.vision_tower.vision_tower.encoder.blocks.9.attn.v_bias": "model-00003-of-00004.safetensors",
612
+ "model.vision_tower.vision_tower.encoder.blocks.9.mlp.fc1.bias": "model-00003-of-00004.safetensors",
613
+ "model.vision_tower.vision_tower.encoder.blocks.9.mlp.fc1.weight": "model-00003-of-00004.safetensors",
614
+ "model.vision_tower.vision_tower.encoder.blocks.9.mlp.fc2.bias": "model-00003-of-00004.safetensors",
615
+ "model.vision_tower.vision_tower.encoder.blocks.9.mlp.fc2.weight": "model-00003-of-00004.safetensors",
616
+ "model.vision_tower.vision_tower.encoder.blocks.9.norm1.bias": "model-00003-of-00004.safetensors",
617
+ "model.vision_tower.vision_tower.encoder.blocks.9.norm1.weight": "model-00003-of-00004.safetensors",
618
+ "model.vision_tower.vision_tower.encoder.blocks.9.norm2.bias": "model-00003-of-00004.safetensors",
619
+ "model.vision_tower.vision_tower.encoder.blocks.9.norm2.weight": "model-00003-of-00004.safetensors",
620
+ "model.vision_tower.vision_tower.encoder.patch_embed.proj.bias": "model-00003-of-00004.safetensors",
621
+ "model.vision_tower.vision_tower.encoder.patch_embed.proj.weight": "model-00003-of-00004.safetensors",
622
+ "model.vision_tower.vision_tower.encoder.vision_layernorm.bias": "model-00004-of-00004.safetensors",
623
+ "model.vision_tower.vision_tower.encoder.vision_layernorm.weight": "model-00004-of-00004.safetensors"
624
+ }
625
+ }
modeling_qwen2_mla.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union
2
+
3
+ import torch
4
+ from torch import nn
5
+ import torch.nn.functional as F
6
+ from transformers.cache_utils import Cache
7
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
8
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
9
+ from transformers.processing_utils import Unpack
10
+
11
+ from transformers.models.qwen2.modeling_qwen2 import (
12
+ Qwen2Model,
13
+ Qwen2DecoderLayer,
14
+ Qwen2PreTrainedModel,
15
+ Qwen2ForCausalLM
16
+ )
17
+ from .configuration_qwen2_mla import Qwen2MLAConfig
18
+
19
+ from transformers.models.gemma2.modeling_gemma2 import (
20
+ eager_attention_forward, # for supporting softcap
21
+ logger
22
+ )
23
+ from transformers.models.deepseek_v3.modeling_deepseek_v3 import (
24
+ apply_rotary_pos_emb_interleave,
25
+ DeepseekV3RMSNorm
26
+ )
27
+
28
+
29
+ class MLAAttention(nn.Module):
30
+ """
31
+ Modified from `transformers.models.llama.modeling_deepseek_v3.DeepseekV3Attention`
32
+ add support for attention bias and softcapping
33
+ """
34
+ def __init__(self, config, layer_idx: int):
35
+
36
+ super().__init__()
37
+ self.config = config
38
+ self.layer_idx = layer_idx
39
+
40
+ self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
41
+ self.attention_dropout = config.attention_dropout
42
+ self.num_heads = config.num_attention_heads
43
+ self.rope_theta = config.rope_theta
44
+ self.q_lora_rank = config.q_lora_rank
45
+ self.kv_lora_rank = config.kv_lora_rank
46
+ self.qk_rope_head_dim = config.qk_rope_head_dim
47
+ self.qk_nope_head_dim = config.qk_nope_head_dim
48
+ self.v_head_dim = config.v_head_dim
49
+ self.qk_head_dim = config.qk_head_dim
50
+
51
+ self.qk_latent_layernorm = getattr(config, "qk_latent_layernorm", True)
52
+
53
+ self.is_causal = True
54
+ if self.q_lora_rank is None:
55
+ self.q_proj = nn.Linear(config.hidden_size, self.num_heads * self.qk_head_dim, bias=config.attention_bias)
56
+ else:
57
+ self.q_a_proj = nn.Linear(config.hidden_size, config.q_lora_rank, bias=False)
58
+ if self.qk_latent_layernorm:
59
+ self.q_a_layernorm = DeepseekV3RMSNorm(self.q_lora_rank)
60
+ self.q_b_proj = nn.Linear(config.q_lora_rank, self.num_heads * self.qk_head_dim, bias=config.attention_bias)
61
+
62
+ self.kv_a_proj_with_mqa = nn.Linear(
63
+ config.hidden_size,
64
+ self.kv_lora_rank + self.qk_rope_head_dim,
65
+ bias=config.attention_bias,
66
+ )
67
+ if self.qk_latent_layernorm:
68
+ self.kv_a_layernorm = DeepseekV3RMSNorm(self.kv_lora_rank)
69
+ self.kv_b_proj = nn.Linear(
70
+ self.kv_lora_rank,
71
+ self.num_heads * (self.qk_nope_head_dim + self.v_head_dim),
72
+ bias=False,
73
+ )
74
+
75
+ self.o_proj = nn.Linear(
76
+ self.num_heads * self.v_head_dim,
77
+ config.hidden_size,
78
+ bias=False,
79
+ )
80
+
81
+ self.scaling = self.qk_head_dim**-0.5
82
+
83
+ def forward(
84
+ self,
85
+ hidden_states: torch.Tensor,
86
+ position_embeddings: Tuple[torch.Tensor, torch.Tensor],
87
+ attention_mask: Optional[torch.Tensor],
88
+ past_key_value: Optional[Cache] = None,
89
+ cache_position: Optional[torch.LongTensor] = None,
90
+ **kwargs: Unpack[FlashAttentionKwargs],
91
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
92
+ batch_size, seq_length = hidden_states.shape[:-1]
93
+ query_shape = (batch_size, seq_length, -1, self.qk_head_dim)
94
+ key_shape = (batch_size, seq_length, -1, self.qk_nope_head_dim + self.v_head_dim)
95
+
96
+ if self.q_lora_rank is None:
97
+ q_states = self.q_proj(hidden_states)
98
+ elif self.qk_latent_layernorm:
99
+ q_states = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
100
+ else:
101
+ q_states = self.q_b_proj(self.q_a_proj(hidden_states))
102
+ q_states = q_states.view(query_shape).transpose(1, 2)
103
+ q_pass, q_rot = torch.split(q_states, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
104
+
105
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
106
+ k_pass, k_rot = torch.split(compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
107
+
108
+ if self.qk_latent_layernorm:
109
+ k_pass = self.kv_b_proj(self.kv_a_layernorm(k_pass)).view(key_shape).transpose(1, 2)
110
+ else:
111
+ k_pass = self.kv_b_proj(k_pass).view(key_shape).transpose(1, 2)
112
+ k_pass, value_states = torch.split(k_pass, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
113
+
114
+ k_rot = k_rot.view(batch_size, 1, seq_length, self.qk_rope_head_dim)
115
+
116
+ cos, sin = position_embeddings
117
+ q_rot, k_rot = apply_rotary_pos_emb_interleave(q_rot, k_rot, cos, sin)
118
+ k_rot = k_rot.expand(*k_pass.shape[:-1], -1)
119
+
120
+ query_states = torch.cat((q_pass, q_rot), dim=-1)
121
+ key_states = torch.cat((k_pass, k_rot), dim=-1)
122
+
123
+ if past_key_value is not None:
124
+ # sin and cos are specific to RoPE models; cache_position needed for the static cache
125
+ cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
126
+ key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
127
+
128
+ if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
129
+ value_states = F.pad(value_states, [0, self.qk_head_dim - self.v_head_dim])
130
+
131
+ attention_interface = eager_attention_forward
132
+ if self.config._attn_implementation != "eager":
133
+ if self.config._attn_implementation == "sdpa" and kwargs.get("output_attentions", False):
134
+ logger.warning_once(
135
+ "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
136
+ 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
137
+ )
138
+ else:
139
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
140
+
141
+ attn_output, attn_weights = attention_interface(
142
+ self,
143
+ query_states,
144
+ key_states,
145
+ value_states,
146
+ attention_mask,
147
+ dropout=0.0 if not self.training else self.attention_dropout,
148
+ scaling=self.scaling,
149
+ softcap=getattr(self.config, "attn_logit_softcapping", None),
150
+ **kwargs,
151
+ )
152
+ if self.config._attn_implementation == "flash_attention_2" and self.qk_head_dim != self.v_head_dim:
153
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
154
+ attn_output = attn_output.reshape(batch_size, seq_length, -1).contiguous()
155
+ attn_output = self.o_proj(attn_output)
156
+ return attn_output, attn_weights
157
+
158
+
159
+
160
+ class Qwen2MLADecoderLayer(Qwen2DecoderLayer):
161
+ """
162
+ Qwen2 decoder layer with MLA (Multi-Head Latent Attention) instead of standard attention.
163
+ This class inherits from Qwen2DecoderLayer and only replaces the self_attn component.
164
+ """
165
+
166
+ def __init__(self, config: Qwen2MLAConfig, layer_idx: int):
167
+ super().__init__(config, layer_idx)
168
+ # Replace the standard Qwen2 attention with MLA attention
169
+ self.self_attn = MLAAttention(config, layer_idx)
170
+
171
+
172
+ class Qwen2MLAPreTrainedModel(Qwen2PreTrainedModel):
173
+ """
174
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
175
+ models for Qwen2 with MLA attention.
176
+ """
177
+
178
+ config_class = Qwen2MLAConfig
179
+ _no_split_modules = ["Qwen2MLADecoderLayer"]
180
+
181
+
182
+ class Qwen2MLAModel(Qwen2MLAPreTrainedModel, Qwen2Model):
183
+ """
184
+ The Qwen2 model with MLA attention layers.
185
+
186
+ This model inherits from both Qwen2MLAPreTrainedModel and Qwen2Model,
187
+ replacing the standard Qwen2 decoder layers with MLA-enabled ones.
188
+ """
189
+
190
+ def __init__(self, config: Qwen2MLAConfig):
191
+ super().__init__(config)
192
+
193
+ # Replace the layers with MLA-enabled decoder layers
194
+ self.layers = nn.ModuleList(
195
+ [Qwen2MLADecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
196
+ )
197
+
198
+
199
+ class Qwen2MLAForCausalLM(Qwen2MLAPreTrainedModel, Qwen2ForCausalLM):
200
+ """
201
+ The Qwen2 model with MLA attention for causal language modeling.
202
+
203
+ This model can be used for text generation tasks, providing the same
204
+ interface as Qwen2ForCausalLM but with MLA attention mechanism.
205
+ """
206
+
207
+ def __init__(self, config: Qwen2MLAConfig):
208
+ super().__init__(config)
209
+ # Replace the base model with the MLA version
210
+ self.model = Qwen2MLAModel(config)
211
+
212
+
213
+ # Export the main classes for external use
214
+ __all__ = [
215
+ "Qwen2MLAForCausalLM",
216
+ "Qwen2MLAModel",
217
+ "Qwen2MLAPreTrainedModel",
218
+ ]
modeling_videochat_flash.py ADDED
@@ -0,0 +1,716 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2024
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ from abc import ABC, abstractmethod
16
+ import re
17
+ import torch
18
+ import torch.nn as nn
19
+ import random
20
+ from typing import List, Optional, Tuple, Union, Dict
21
+
22
+ from transformers import AutoConfig, AutoModelForCausalLM
23
+ from transformers.modeling_outputs import CausalLMOutputWithPast
24
+ from transformers.generation.utils import GenerateOutput
25
+
26
+ from .vision_tower_builder import build_vision_tower
27
+ from .mm_projector_builder import build_vision_projector
28
+
29
+ from .constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, DEFAULT_IMAGE_TOKEN
30
+ from .conversation import conv_templates, SeparatorStyle
31
+ from .mm_utils import tokenizer_image_token, KeywordsStoppingCriteria, get_anyres_image_grid_shape, load_video
32
+ from .modeling_qwen2_mla import Qwen2MLAModel, Qwen2MLAForCausalLM
33
+
34
+
35
+ from .configuration_qwen2_mla import Qwen2MLAConfig
36
+
37
+
38
+
39
+ class LlavaMetaModel:
40
+
41
+ def __init__(self, config):
42
+ super(LlavaMetaModel, self).__init__(config)
43
+
44
+ if hasattr(config, "mm_vision_tower"):
45
+ delay_load = getattr(config, "delay_load", False)
46
+ self.vision_tower = build_vision_tower(config, delay_load=delay_load)
47
+ self.mm_projector = build_vision_projector(config, vision_cfg=self.vision_tower.config)
48
+
49
+ if "unpad" in getattr(config, "mm_patch_merge_type", ""):
50
+ self.image_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
51
+ if "nopad" in getattr(config, "mm_patch_merge_type", "") and getattr(self.config, "mm_newline_position", "nothing") != "nothing":
52
+ self.frame_newline = nn.Parameter(torch.empty(config.hidden_size, dtype=self.dtype))
53
+
54
+ def get_vision_tower(self):
55
+ vision_tower = getattr(self, "vision_tower", None)
56
+ if type(vision_tower) is list:
57
+ vision_tower = vision_tower[0]
58
+ return vision_tower
59
+
60
+ def initialize_vision_modules(self, model_args, fsdp=None):
61
+ vision_tower = model_args.vision_tower
62
+ mm_vision_select_layer = model_args.mm_vision_select_layer
63
+ mm_vision_select_feature = model_args.mm_vision_select_feature
64
+ pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
65
+ mm_patch_merge_type = model_args.mm_patch_merge_type
66
+
67
+ self.config.mm_vision_tower = vision_tower
68
+ self.config.vision_tower_pretrained = getattr(model_args, "vision_tower_pretrained", "")
69
+
70
+ if self.get_vision_tower() is None:
71
+ vision_tower = build_vision_tower(model_args)
72
+
73
+ if fsdp is not None and len(fsdp) > 0:
74
+ self.vision_tower = [vision_tower]
75
+ else:
76
+ self.vision_tower = vision_tower
77
+ else:
78
+ if fsdp is not None and len(fsdp) > 0:
79
+ vision_tower = self.vision_tower[0]
80
+ else:
81
+ vision_tower = self.vision_tower
82
+ vision_tower.load_model()
83
+
84
+
85
+
86
+ self.config.use_mm_proj = True
87
+ self.config.mm_projector_type = getattr(model_args, "mm_projector_type", "linear")
88
+ self.config.mm_vision_select_layer = mm_vision_select_layer
89
+ self.config.mm_vision_select_feature = mm_vision_select_feature
90
+ self.config.mm_patch_merge_type = mm_patch_merge_type
91
+
92
+ if getattr(self, "mm_projector", None) is None:
93
+ self.mm_projector = build_vision_projector(self.config, vision_cfg=vision_tower.config)
94
+
95
+ if "unpad" in mm_patch_merge_type:
96
+ embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
97
+ self.image_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std)
98
+ if "nopad" in getattr(self.config, "mm_patch_merge_type", "") and getattr(self.config, "mm_newline_position", "nothing") != "nothing":
99
+ embed_std = 1 / torch.sqrt(torch.tensor(self.config.hidden_size, dtype=self.dtype))
100
+ self.frame_newline = nn.Parameter(torch.randn(self.config.hidden_size, dtype=self.dtype) * embed_std)
101
+ else:
102
+ # In case it is frozen by LoRA
103
+ for p in self.mm_projector.parameters():
104
+ p.requires_grad = True
105
+
106
+ if pretrain_mm_mlp_adapter is not None:
107
+ mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")
108
+
109
+ def get_w(weights, keyword):
110
+ return {k.split(keyword + ".")[1]: v for k, v in weights.items() if keyword in k}
111
+
112
+ if self.config.mm_projector_type =='lxh_qformer':
113
+ incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"), strict=False)
114
+ else:
115
+ incompatible_keys = self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))
116
+ print(f"Loaded mm projector weights from {pretrain_mm_mlp_adapter}. Incompatible keys: {incompatible_keys}")
117
+
118
+
119
+ class LlavaMetaForCausalLM(ABC):
120
+
121
+ @abstractmethod
122
+ def get_model(self):
123
+ pass
124
+
125
+ def get_vision_tower(self):
126
+ return self.get_model().get_vision_tower()
127
+
128
+
129
+ def encode_video_image(self, images_list, video_idx_in_batch):
130
+ # video encoder编码后按图像的connector处理
131
+ bs = len(images_list)
132
+
133
+ concat_images = []
134
+ concat_videos = []
135
+ for idx, image in enumerate(images_list):
136
+ if idx in video_idx_in_batch:
137
+ concat_videos.append(image)
138
+ else:
139
+ concat_images.append(image)
140
+ # print(concat_videos[0].shape)
141
+ has_image = len(concat_images) > 0
142
+ has_video = len(concat_videos) > 0
143
+
144
+ mm_local_num_frames = getattr(self.config, "mm_local_num_frames", -1)
145
+ assert mm_local_num_frames != -1
146
+ if has_image:
147
+ image_split_sizes = [image.shape[0] for image in concat_images]
148
+ concat_images = torch.cat([image.unsqueeze(1) for image in concat_images], dim=0)
149
+ # print("input vit image.shape:", concat_images.shape)
150
+ images_features = self.get_model().get_vision_tower()(concat_images) # B_i, N, D
151
+ images_features = torch.split(images_features, image_split_sizes)
152
+
153
+ if has_video:
154
+ video_split_sizes = [video.shape[0] // mm_local_num_frames for video in concat_videos]
155
+ concat_videos = torch.cat([video.reshape(video.shape[0] // mm_local_num_frames, mm_local_num_frames, video.shape[1], video.shape[2], video.shape[3]) for video in concat_videos], dim=0)
156
+ # print("input vit video.shape:", concat_videos.shape)
157
+ videos_features = self.get_model().get_vision_tower()(concat_videos) # B_v, N, D
158
+ videos_features = [v.reshape(-1, v.shape[-2] // mm_local_num_frames, v.shape[-1]) for v in torch.split(videos_features, video_split_sizes)]
159
+
160
+
161
+ all_videos_or_images_features = []
162
+ img_idx = 0
163
+ vid_idx = 0
164
+
165
+ for idx in range(bs):
166
+
167
+ if idx in video_idx_in_batch:
168
+ feat = self.get_model().mm_projector(videos_features[vid_idx], compress=True, local_num_frames=getattr(self.config, "mm_local_num_frames", -1))
169
+
170
+ vid_idx += 1
171
+ else:
172
+ feat = self.get_model().mm_projector(images_features[img_idx], compress=False)
173
+ img_idx += 1
174
+ # print("video_idx_in_batch:", video_idx_in_batch)
175
+ all_videos_or_images_features.append(feat)
176
+
177
+ if has_video:
178
+ assert vid_idx == len(videos_features), f"vid: {vid_idx} != {len(videos_features)}"
179
+ if has_image:
180
+ assert img_idx == len(images_features), f"img: {img_idx} != {len(images_features)}"
181
+
182
+ return all_videos_or_images_features
183
+
184
+
185
+
186
+ def prepare_inputs_labels_for_multimodal(self, input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities=["image"], image_sizes=None):
187
+ assert type(modalities) is list, modalities
188
+
189
+ vision_tower = self.get_vision_tower()
190
+ # rank_print(modalities)
191
+ if vision_tower is None or images is None or input_ids.shape[1] == 1:
192
+ return input_ids, position_ids, attention_mask, past_key_values, None, labels
193
+
194
+ if type(images) is list or images.ndim == 5:
195
+ if type(images) is list:
196
+ images = [x.unsqueeze(0) if x.ndim == 3 else x for x in images]
197
+
198
+ video_idx_in_batch = []
199
+ for _ in range(len(modalities)):
200
+ if modalities[_] == "video":
201
+ video_idx_in_batch.append(_)
202
+
203
+ images_list = []
204
+ for image in images:
205
+ if image.ndim == 4:
206
+ images_list.append(image)
207
+ else:
208
+ images_list.append(image.unsqueeze(0))
209
+
210
+
211
+ vision_encode_type = getattr(self.config, "vision_encode_type", "image")
212
+ mm_patch_merge_type = getattr(self.config, "mm_patch_merge_type", "flat")
213
+ image_aspect_ratio = getattr(self.config, "image_aspect_ratio", "square")
214
+ frame_aspect_ratio = getattr(self.config, "frame_aspect_ratio", "square")
215
+ mm_newline_position = getattr(self.config, "mm_newline_position", "nothing")
216
+
217
+
218
+ if vision_encode_type == "video_image": # video backbone, process video with compress
219
+ image_features = self.encode_video_image(images_list, video_idx_in_batch=video_idx_in_batch)
220
+ else:
221
+ raise NotImplementedError(vision_encode_type)
222
+
223
+
224
+ if mm_patch_merge_type == "flat":
225
+ image_features = [x.flatten(0, 1) for x in image_features]
226
+ elif mm_patch_merge_type.startswith("spatial"):
227
+ new_image_features = []
228
+ for image_idx, image_feature in enumerate(image_features):
229
+
230
+ if image_idx in video_idx_in_batch: # video operations
231
+
232
+ if "anyres" in frame_aspect_ratio:
233
+ raise NotImplementedError
234
+ else:
235
+ frame_feature = image_feature
236
+
237
+ if "pad" in mm_patch_merge_type:
238
+ if mm_newline_position == 'one_token':
239
+ frame_feature = frame_feature.flatten(0, 1)
240
+ if "unpad" in mm_patch_merge_type:
241
+ frame_feature = torch.cat((frame_feature, self.model.image_newline[None].to(frame_feature.device)), dim=0)
242
+ else:
243
+ frame_feature = torch.cat((frame_feature, self.model.frame_newline[None].to(frame_feature.device)), dim=0)
244
+ elif mm_newline_position == 'nothing':
245
+ frame_feature = frame_feature.flatten(0, 1)
246
+ else:
247
+ raise NotImplementedError("add pad please!!")
248
+ else:
249
+ frame_feature = frame_feature.flatten(0, 1)
250
+
251
+ # print(f"final video frame_feature.shape: {frame_feature.shape}")
252
+ image_feature = frame_feature
253
+
254
+ elif image_feature.shape[0] > 1: # multi patches and multi images operations
255
+ base_image_feature = image_feature[0]
256
+ image_feature = image_feature[1:]
257
+ origin_size = image_feature.shape
258
+
259
+ height = width = self.get_model().mm_projector.num_image_patches_per_side
260
+ assert height * width == base_image_feature.shape[0], f"height:{height}, width: {width}, base_image_feature: {base_image_feature.shape}"
261
+
262
+ if "anyres_max" in image_aspect_ratio:
263
+ matched_anyres_max_num_patches = re.match(r"anyres_max_(\d+)", image_aspect_ratio)
264
+ if matched_anyres_max_num_patches:
265
+ max_num_patches = int(matched_anyres_max_num_patches.group(1))
266
+
267
+ if "anyres" in image_aspect_ratio:
268
+ if hasattr(self.get_vision_tower(), "image_size"):
269
+ vision_tower_image_size = self.get_vision_tower().image_size
270
+ else:
271
+ raise ValueError("vision_tower_image_size is not found in the vision tower.")
272
+ try:
273
+ num_patch_width, num_patch_height = get_anyres_image_grid_shape(image_sizes[image_idx], self.config.image_grid_pinpoints, vision_tower_image_size, max_resolutions=None)
274
+ except Exception as e:
275
+ print(f"Error: {e}")
276
+ raise e
277
+ # num_patch_width, num_patch_height = 2, 2
278
+
279
+ image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1)
280
+ else:
281
+ raise NotImplementedError(image_aspect_ratio)
282
+ image_feature = image_feature.view(2, 2, height, width, -1)
283
+
284
+ if "maxpool2x2" in mm_patch_merge_type:
285
+ raise NotImplementedError
286
+ elif "unpad" in mm_patch_merge_type and "anyres_max" in image_aspect_ratio and matched_anyres_max_num_patches:
287
+ raise NotImplementedError
288
+ elif "unpad" in mm_patch_merge_type:
289
+ raise NotImplementedError
290
+ else:
291
+ image_feature = image_feature.permute(0, 2, 1, 3, 4).contiguous()
292
+ image_feature = image_feature.flatten(0, 3)
293
+ if "nobase" in mm_patch_merge_type:
294
+ pass
295
+ else:
296
+ try:
297
+ image_feature = torch.cat((base_image_feature, image_feature), dim=0)
298
+ except Exception as e:
299
+ raise ValueError(f"{num_patch_width} {num_patch_height} now: base_image_feature: {base_image_feature.shape}, {image_feature.shape}, image_sizes[image_idx]: {image_sizes[image_idx]}, origin_size: {origin_size}, {image_sizes[image_idx]}, {self.config.image_grid_pinpoints}, {vision_tower_image_size}")
300
+ else: # single image operations
301
+ image_feature = image_feature[0]
302
+ if "unpad" in mm_patch_merge_type:
303
+ image_feature = torch.cat((image_feature, self.model.image_newline[None]), dim=0)
304
+
305
+ # print(f"image/video_feature.shape: {image_feature.shape}")
306
+ new_image_features.append(image_feature)
307
+ image_features = new_image_features
308
+ else:
309
+ raise ValueError(f"Unexpected mm_patch_merge_type: {self.config.mm_patch_merge_type}")
310
+ else:
311
+ # raise NotImplementedError(f"images.shape={images.shape}, modalities={modalities}")
312
+ image_features = self.encode_image(images)
313
+
314
+ # TODO: image start / end is not implemented here to support pretraining.
315
+ if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(self.config, "mm_use_im_start_end", False):
316
+ raise NotImplementedError
317
+ # print(f"Total images len(image_features: {len(image_features)}")
318
+
319
+ # Let's just add dummy tensors if they do not exist,
320
+ # it is a headache to deal with None all the time.
321
+ # But it is not ideal, and if you have a better idea,
322
+ # please open an issue / submit a PR, thanks.
323
+ _labels = labels
324
+ _position_ids = position_ids
325
+ _attention_mask = attention_mask
326
+ if attention_mask is None:
327
+ attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
328
+ else:
329
+ attention_mask = attention_mask.bool()
330
+ if position_ids is None:
331
+ position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
332
+ if labels is None:
333
+ labels = torch.full_like(input_ids, IGNORE_INDEX)
334
+
335
+
336
+ input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
337
+ labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
338
+
339
+ new_input_embeds = []
340
+ new_labels = []
341
+ cur_image_idx = 0
342
+
343
+ mm_llm_compress = getattr(self.config, "mm_llm_compress", False)
344
+
345
+ if mm_llm_compress:
346
+ self.model.llm_compress_type = getattr(self.config, "llm_compress_type", "attention")
347
+ self.model.llm_compress_layer_list = getattr(self.config, "llm_compress_layer_list", [8, 16, 24])
348
+ self.model.llm_image_token_ratio_list = getattr(self.config, "llm_image_token_ratio_list", [1.0, 0.5, 0.25, 0.125])
349
+ first_image_token_position = []
350
+ text_prompt_lens = []
351
+ else:
352
+ self.model.llm_compress_type = "attention"
353
+ self.model.llm_compress_layer_list = []
354
+ self.model.llm_image_token_ratio_list = []
355
+ first_image_token_position = []
356
+ text_prompt_lens = []
357
+
358
+ # rank_print("Inserting Images embedding")
359
+ for batch_idx, cur_input_ids in enumerate(input_ids):
360
+ num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
361
+
362
+ if mm_llm_compress:
363
+ ####### copy from pdrop, only support single image/video NOTE ##################
364
+ # record image position for further dropping
365
+ image_index = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
366
+ assert len(image_index) == 1, f"Only support singe/video: {image_index}"
367
+ if image_index == []:
368
+ first_image_token_position.append(-1)
369
+ else:
370
+ first_image_token_position.append(image_index[0])
371
+
372
+
373
+ # record input instruction length in inference mode
374
+ if not self.training:
375
+ if image_index == []:
376
+ assert num_images == 0, num_images
377
+ else:
378
+ assert num_images == 1, f"num_images={num_images}"
379
+ text_prompt_lens.append(cur_input_ids.shape[0] - num_images) # consider image place holder
380
+
381
+ ###############################################
382
+
383
+ # print(f"num_images={num_images}")
384
+ if num_images == 0:
385
+ cur_image_features = image_features[cur_image_idx]
386
+ cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
387
+ cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
388
+ new_input_embeds.append(cur_input_embeds)
389
+ new_labels.append(labels[batch_idx])
390
+ cur_image_idx += 1
391
+ continue
392
+
393
+ image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
394
+ cur_input_ids_noim = []
395
+ cur_labels = labels[batch_idx]
396
+ cur_labels_noim = []
397
+ for i in range(len(image_token_indices) - 1):
398
+ cur_input_ids_noim.append(cur_input_ids[image_token_indices[i] + 1 : image_token_indices[i + 1]])
399
+ cur_labels_noim.append(cur_labels[image_token_indices[i] + 1 : image_token_indices[i + 1]])
400
+ split_sizes = [x.shape[0] for x in cur_labels_noim]
401
+ cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
402
+ cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
403
+ cur_new_input_embeds = []
404
+ cur_new_labels = []
405
+
406
+ for i in range(num_images + 1):
407
+ cur_new_input_embeds.append(cur_input_embeds_no_im[i])
408
+ cur_new_labels.append(cur_labels_noim[i])
409
+ if i < num_images:
410
+ try:
411
+ cur_image_features = image_features[cur_image_idx]
412
+ except IndexError:
413
+ print(f"cur_image_idx={cur_image_idx} is not ok")
414
+ cur_image_features = image_features[cur_image_idx - 1]
415
+ cur_image_idx += 1
416
+ cur_new_input_embeds.append(cur_image_features)
417
+ cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
418
+
419
+ cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
420
+
421
+ # import pdb; pdb.set_trace()
422
+ cur_new_input_embeds = torch.cat(cur_new_input_embeds)
423
+ cur_new_labels = torch.cat(cur_new_labels)
424
+
425
+ new_input_embeds.append(cur_new_input_embeds)
426
+ new_labels.append(cur_new_labels)
427
+
428
+
429
+ if mm_llm_compress:
430
+ self.model.first_image_token_position = first_image_token_position
431
+ self.model.text_prompt_lens = text_prompt_lens
432
+ self.model.num_image_token_lens = [image_feature.shape[0] for image_feature in image_features]
433
+
434
+ # Truncate sequences to max length as image embeddings can make the sequence longer
435
+ tokenizer_model_max_length = getattr(self.config, "tokenizer_model_max_length", None)
436
+ # rank_print("Finishing Inserting")
437
+
438
+ new_input_embeds = [x[:tokenizer_model_max_length] for x, modality in zip(new_input_embeds, modalities)]
439
+ new_labels = [x[:tokenizer_model_max_length] for x, modality in zip(new_labels, modalities)]
440
+
441
+ # Combine them
442
+ max_len = max(x.shape[0] for x in new_input_embeds)
443
+ batch_size = len(new_input_embeds)
444
+
445
+ new_input_embeds_padded = []
446
+ new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
447
+ attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
448
+ position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
449
+ # print("Prepare pos id")
450
+
451
+ for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
452
+ cur_len = cur_new_embed.shape[0]
453
+ if getattr(self.config, "tokenizer_padding_side", "right") == "left":
454
+ new_input_embeds_padded.append(torch.cat((torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device), cur_new_embed), dim=0))
455
+ if cur_len > 0:
456
+ new_labels_padded[i, -cur_len:] = cur_new_labels
457
+ attention_mask[i, -cur_len:] = True
458
+ position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
459
+ else:
460
+ new_input_embeds_padded.append(torch.cat((cur_new_embed, torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0))
461
+ if cur_len > 0:
462
+ new_labels_padded[i, :cur_len] = cur_new_labels
463
+ attention_mask[i, :cur_len] = True
464
+ position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
465
+
466
+ new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
467
+ # print("tokenizer padding")
468
+
469
+ if _labels is None:
470
+ new_labels = None
471
+ else:
472
+ new_labels = new_labels_padded
473
+
474
+ if _attention_mask is None:
475
+ attention_mask = None
476
+ else:
477
+ attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
478
+
479
+ if _position_ids is None:
480
+ position_ids = None
481
+ if getattr(self.config, "use_pos_skipping", False) and self.training:
482
+ position_ids = torch.arange(new_input_embeds.size(1), device=new_input_embeds.device).unsqueeze(0).to(new_input_embeds.device)
483
+ split_position = random.randint(0, new_input_embeds.size(1))
484
+ left_add = random.randint(0, self.config.pos_skipping_range)
485
+ right_add = random.randint(left_add, self.config.pos_skipping_range)
486
+ position_ids[:, :split_position] += left_add
487
+ position_ids[:, split_position:] += right_add
488
+ # import pdb; pdb.set_trace()
489
+ # print("Finish preparing")
490
+ return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
491
+
492
+ def initialize_vision_tokenizer(self, model_args, tokenizer):
493
+ if model_args.mm_use_im_patch_token:
494
+ tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
495
+ self.resize_token_embeddings(len(tokenizer))
496
+
497
+ if model_args.mm_use_im_start_end:
498
+ num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
499
+ self.resize_token_embeddings(len(tokenizer))
500
+
501
+ if num_new_tokens > 0:
502
+ input_embeddings = self.get_input_embeddings().weight.data
503
+ output_embeddings = self.get_output_embeddings().weight.data
504
+
505
+ input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
506
+ output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
507
+
508
+ input_embeddings[-num_new_tokens:] = input_embeddings_avg
509
+ output_embeddings[-num_new_tokens:] = output_embeddings_avg
510
+
511
+ if model_args.tune_mm_mlp_adapter:
512
+ for p in self.get_input_embeddings().parameters():
513
+ p.requires_grad = True
514
+ for p in self.get_output_embeddings().parameters():
515
+ p.requires_grad = False
516
+
517
+ if model_args.pretrain_mm_mlp_adapter:
518
+ mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location="cpu")
519
+ embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
520
+ assert num_new_tokens == 2
521
+ if input_embeddings.shape == embed_tokens_weight.shape:
522
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
523
+ elif embed_tokens_weight.shape[0] == num_new_tokens:
524
+ input_embeddings[-num_new_tokens:] = embed_tokens_weight
525
+ else:
526
+ raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
527
+ elif model_args.mm_use_im_patch_token:
528
+ if model_args.tune_mm_mlp_adapter:
529
+ for p in self.get_input_embeddings().parameters():
530
+ p.requires_grad = False
531
+ for p in self.get_output_embeddings().parameters():
532
+ p.requires_grad = False
533
+
534
+
535
+
536
+ class VideoChatFlashQwenConfig(Qwen2MLAConfig):
537
+ model_type = "videochat_flash_qwen"
538
+
539
+
540
+ class VideoChatFlashQwenModel(LlavaMetaModel, Qwen2MLAModel):
541
+ config_class = VideoChatFlashQwenConfig
542
+
543
+ def __init__(self, config: VideoChatFlashQwenConfig):
544
+ super(VideoChatFlashQwenModel, self).__init__(config)
545
+
546
+
547
+ class VideoChatFlashQwenForCausalLM(LlavaMetaForCausalLM, Qwen2MLAForCausalLM):
548
+ config_class = VideoChatFlashQwenConfig
549
+
550
+ def __init__(self, config):
551
+ # super(Qwen2MLAForCausalLM, self).__init__(config)
552
+ Qwen2MLAForCausalLM.__init__(self, config)
553
+ config.model_type = "videochat_flash_qwen"
554
+ # config.rope_scaling = None
555
+
556
+ self.model = VideoChatFlashQwenModel(config)
557
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
558
+ # Initialize weights and apply final processing
559
+ self.post_init()
560
+
561
+ def get_model(self):
562
+ return self.model
563
+
564
+ def forward(
565
+ self,
566
+ input_ids: torch.LongTensor = None,
567
+ attention_mask: Optional[torch.Tensor] = None,
568
+ position_ids: Optional[torch.LongTensor] = None,
569
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
570
+ inputs_embeds: Optional[torch.FloatTensor] = None,
571
+ labels: Optional[torch.LongTensor] = None,
572
+ use_cache: Optional[bool] = None,
573
+ output_attentions: Optional[bool] = None,
574
+ output_hidden_states: Optional[bool] = None,
575
+ images: Optional[torch.FloatTensor] = None,
576
+ image_sizes: Optional[List[List[int]]] = None,
577
+ return_dict: Optional[bool] = None,
578
+ modalities: Optional[List[str]] = ["image"],
579
+ dpo_forward: Optional[bool] = False,
580
+ cache_position=None,
581
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
582
+
583
+ if inputs_embeds is None:
584
+ (input_ids, position_ids, attention_mask, past_key_values, inputs_embeds, labels) = self.prepare_inputs_labels_for_multimodal(input_ids, position_ids, attention_mask, past_key_values, labels, images, modalities, image_sizes)
585
+
586
+ # print("inputs_embeds.shape:", inputs_embeds.shape)
587
+ if dpo_forward:
588
+ raise NotImplementedError
589
+ else:
590
+ return super().forward(
591
+ input_ids=input_ids,
592
+ attention_mask=attention_mask,
593
+ position_ids=position_ids,
594
+ past_key_values=past_key_values,
595
+ inputs_embeds=inputs_embeds,
596
+ labels=labels,
597
+ use_cache=use_cache,
598
+ output_attentions=output_attentions,
599
+ output_hidden_states=output_hidden_states,
600
+ return_dict=return_dict,
601
+ )
602
+
603
+ @torch.no_grad()
604
+ def generate(
605
+ self,
606
+ inputs: Optional[torch.Tensor] = None,
607
+ images: Optional[torch.Tensor] = None,
608
+ image_sizes: Optional[torch.Tensor] = None,
609
+ modalities: Optional[List[str]] = ["image"],
610
+ **kwargs,
611
+ ) -> Union[GenerateOutput, torch.LongTensor]:
612
+ position_ids = kwargs.pop("position_ids", None)
613
+ attention_mask = kwargs.pop("attention_mask", None)
614
+ if "inputs_embeds" in kwargs:
615
+ raise NotImplementedError("`inputs_embeds` is not supported")
616
+
617
+ if images is not None:
618
+ (inputs, position_ids, attention_mask, _, inputs_embeds, _) = self.prepare_inputs_labels_for_multimodal(inputs, position_ids, attention_mask, None, None, images, modalities, image_sizes=image_sizes)
619
+ else:
620
+ self.model.image_token_posi = [-1]
621
+ self.model.prompt_len = None
622
+ self.model.image_tokens = [0]
623
+ inputs_embeds = self.get_model().embed_tokens(inputs)
624
+
625
+ return super().generate(position_ids=position_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, **kwargs)
626
+
627
+ @torch.no_grad()
628
+ def chat(self,
629
+ video_path,
630
+ tokenizer,
631
+ user_prompt,
632
+ chat_history=None,
633
+ return_history=True,
634
+ max_num_frames=512,
635
+ media_dict=None,
636
+ generation_config={}):
637
+
638
+ frames, time_msg = load_video(video_path, max_num_frames=max_num_frames, media_dict=media_dict)
639
+
640
+ image_sizes = [frames[0].shape[:2]]
641
+
642
+ frames = [self.get_vision_tower().image_processor.preprocess(frames, return_tensors="pt")["pixel_values"].to(self.model.dtype).cuda()]
643
+
644
+ conv = conv_templates["qwen_2"].copy()
645
+
646
+ if chat_history is None or len(chat_history) == 0:
647
+ user_prompt = f'{DEFAULT_IMAGE_TOKEN}\n{time_msg.strip()} {user_prompt}'
648
+ else:
649
+ assert DEFAULT_IMAGE_TOKEN in chat_history[0]['content'], chat_history
650
+ for msg in chat_history:
651
+ conv.append_message(msg['role'], msg['content'])
652
+
653
+ conv.append_message(conv.roles[0], user_prompt)
654
+ conv.append_message(conv.roles[1], None)
655
+
656
+ prompt = conv.get_prompt()
657
+
658
+ input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt").unsqueeze(0).cuda()
659
+
660
+ if tokenizer.pad_token_id is None:
661
+ if "qwen" in tokenizer.name_or_path.lower():
662
+ print("Setting pad token to bos token for qwen model.")
663
+ tokenizer.pad_token_id = 151643
664
+
665
+ attention_masks = input_ids.ne(tokenizer.pad_token_id).long().cuda()
666
+
667
+ stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
668
+ keywords = [stop_str]
669
+ stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
670
+
671
+ with torch.inference_mode():
672
+ output_ids = self.generate(
673
+ inputs=input_ids,
674
+ images=frames,
675
+ attention_mask=attention_masks,
676
+ modalities=["video"],
677
+ image_sizes=image_sizes,
678
+ use_cache=True,
679
+ stopping_criteria=[stopping_criteria],
680
+ **generation_config
681
+ )
682
+
683
+ outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0].strip()
684
+ if outputs.endswith(stop_str):
685
+ outputs = outputs[: -len(stop_str)]
686
+
687
+ outputs = outputs.strip()
688
+
689
+ # print(f"\033[91m== Question: \033[0m\n{prompt}\n")
690
+ # print(f"\033[91m== Response: \033[0m\n{outputs}\n")
691
+
692
+ if chat_history is None:
693
+ chat_history = []
694
+
695
+ chat_history.append({"role":conv.roles[0], "content":user_prompt})
696
+ chat_history.append({"role":conv.roles[1], "content":outputs})
697
+ if return_history:
698
+ return outputs, chat_history
699
+ else:
700
+ return outputs
701
+
702
+
703
+
704
+ def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
705
+ images = kwargs.pop("images", None)
706
+ image_sizes = kwargs.pop("image_sizes", None)
707
+ inputs = super().prepare_inputs_for_generation(input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs)
708
+ if images is not None:
709
+ inputs["images"] = images
710
+ if image_sizes is not None:
711
+ inputs["image_sizes"] = image_sizes
712
+ return inputs
713
+
714
+
715
+ AutoConfig.register("videochat_flash_qwen", VideoChatFlashQwenConfig)
716
+ AutoModelForCausalLM.register(VideoChatFlashQwenConfig, VideoChatFlashQwenForCausalLM)
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
test.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8da3fb45df69e628d09809e88b3f3725568de5d094a45361dea2a54d3e205f17
3
+ size 608283
test.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModel, AutoTokenizer
2
+ import torch
3
+ from modeling_videochat_flash import VideoChatFlashQwenForCausalLM
4
+
5
+ # model setting
6
+ model_path = './'
7
+
8
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
9
+ model = VideoChatFlashQwenForCausalLM.from_pretrained(model_path).to(torch.bfloat16).cuda()
10
+ image_processor = model.get_vision_tower().image_processor
11
+
12
+ mm_llm_compress = False # use the global compress or not
13
+ if mm_llm_compress:
14
+ model.config.mm_llm_compress = True
15
+ model.config.llm_compress_type = "uniform0_attention"
16
+ model.config.llm_compress_layer_list = [4, 18]
17
+ model.config.llm_image_token_ratio_list = [1, 0.75, 0.25]
18
+ else:
19
+ model.config.mm_llm_compress = False
20
+
21
+ # evaluation setting
22
+ max_num_frames = 512
23
+ generation_config = dict(
24
+ do_sample=False,
25
+ temperature=0.0,
26
+ max_new_tokens=1024,
27
+ top_p=0.1,
28
+ num_beams=1
29
+ )
30
+
31
+ video_path = "test.mp4"
32
+
33
+ # single-turn conversation
34
+ question1 = "Describe this video in detail."
35
+ output1, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question1, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
36
+
37
+ print(output1)
38
+
39
+ # # multi-turn conversation
40
+ # question2 = "How many people appear in the video?"
41
+ # output2, chat_history = model.chat(video_path=video_path, tokenizer=tokenizer, user_prompt=question2, chat_history=chat_history, return_history=True, max_num_frames=max_num_frames, generation_config=generation_config)
42
+
43
+ # print(output2)
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:540b7fbf60b80e8293593a86960df91d2263723d69107ffc1afc89a7c08cda12
3
+ size 11422162
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 32768,
204
+ "pad_token": "<|endoftext|>",
205
+ "padding_side": "right",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
vision_tower_builder.py ADDED
@@ -0,0 +1,632 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Optional, Tuple, Union, Dict
2
+ from dataclasses import dataclass
3
+ from functools import partial, reduce
4
+ from PIL import Image
5
+ import os
6
+ from transformers.image_processing_utils import BatchFeature, get_size_dict
7
+ from transformers.image_transforms import (
8
+ convert_to_rgb,
9
+ normalize,
10
+ rescale,
11
+ resize,
12
+ to_channel_dimension_format,
13
+ )
14
+ from transformers.image_utils import (
15
+ ChannelDimension,
16
+ PILImageResampling,
17
+ to_numpy_array,
18
+ )
19
+ import numpy as np
20
+ import torch
21
+ import torch.nn as nn
22
+ import torch.nn.functional as F
23
+ import torch.utils.checkpoint as checkpoint
24
+ from functools import partial
25
+ try:
26
+ from flash_attn import flash_attn_qkvpacked_func
27
+ use_flash_attn = True
28
+ except:
29
+ use_flash_attn = False
30
+ print("You need to install flash_attn to be faster!")
31
+
32
+ try:
33
+ from timm.layers import drop_path, to_2tuple, trunc_normal_
34
+ except:
35
+ from timm.models.layers import drop_path, trunc_normal_, to_2tuple
36
+
37
+
38
+
39
+ class DropPath(nn.Module):
40
+ """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
41
+ """
42
+ def __init__(self, drop_prob=None):
43
+ super(DropPath, self).__init__()
44
+ self.drop_prob = drop_prob
45
+
46
+ def forward(self, x):
47
+ return drop_path(x, self.drop_prob, self.training)
48
+
49
+ def extra_repr(self) -> str:
50
+ return 'p={}'.format(self.drop_prob)
51
+
52
+
53
+ class Mlp(nn.Module):
54
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
55
+ super().__init__()
56
+ out_features = out_features or in_features
57
+ hidden_features = hidden_features or in_features
58
+ self.fc1 = nn.Linear(in_features, hidden_features)
59
+ self.act = act_layer()
60
+ self.fc2 = nn.Linear(hidden_features, out_features)
61
+ self.drop = nn.Dropout(drop)
62
+
63
+ def forward(self, x):
64
+ x = self.fc1(x)
65
+ x = self.act(x)
66
+ x = self.drop(x)
67
+ x = self.fc2(x)
68
+ x = self.drop(x)
69
+ return x
70
+
71
+ class Attention(nn.Module):
72
+ def __init__(
73
+ self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
74
+ proj_drop=0., attn_head_dim=None,
75
+ attn_type='flash_v2'):
76
+
77
+ if use_flash_attn:
78
+ attn_type = attn_type
79
+ else:
80
+ attn_type = 'origin'
81
+
82
+ print(attn_type)
83
+
84
+ super().__init__()
85
+ self.num_heads = num_heads
86
+ head_dim = dim // num_heads
87
+ if attn_head_dim is not None:
88
+ head_dim = attn_head_dim
89
+ all_head_dim = head_dim * self.num_heads
90
+ self.scale = qk_scale or head_dim ** -0.5
91
+
92
+ self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
93
+ if qkv_bias:
94
+ self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
95
+ self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
96
+ else:
97
+ self.q_bias = None
98
+ self.v_bias = None
99
+
100
+ if attn_type not in ['origin', 'flash_v2']:
101
+ raise NotImplementedError(f"Not support attn_type: {attn_type}")
102
+
103
+ # print('umt:', f'attn_type: {attn_type}')
104
+
105
+ self.attn_type = attn_type
106
+ if attn_type == 'flash_v2':
107
+ self.attn_drop = attn_drop
108
+ else:
109
+ self.attn_drop = nn.Dropout(attn_drop)
110
+ self.proj = nn.Linear(all_head_dim, dim)
111
+ self.proj_drop = nn.Dropout(proj_drop)
112
+
113
+ def forward(self, x):
114
+ B, N, C = x.shape
115
+ qkv_bias = None
116
+ if self.q_bias is not None:
117
+ qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
118
+ # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
119
+ qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
120
+
121
+ if self.attn_type == 'flash_v2':
122
+ qkv = qkv.reshape(B, N, 3, self.num_heads, -1)
123
+ x = flash_attn_qkvpacked_func(qkv, dropout_p=self.attn_drop, softmax_scale=self.scale, causal=False).reshape(B, N, -1)
124
+ else:
125
+ qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
126
+ q, k, v = qkv[0], qkv[1], qkv[
127
+ 2] # make torchscript happy (cannot use tensor as tuple)
128
+ # B num_heads N head_dim
129
+
130
+ q = q * self.scale
131
+ attn = (q @ k.transpose(-2, -1))
132
+
133
+ attn = attn.softmax(dim=-1)
134
+ attn = self.attn_drop(attn)
135
+
136
+ x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
137
+
138
+ x = self.proj(x)
139
+ x = self.proj_drop(x)
140
+ return x
141
+
142
+
143
+
144
+
145
+ class Block(nn.Module):
146
+ def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
147
+ drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
148
+ attn_head_dim=None):
149
+ super().__init__()
150
+ self.norm1 = norm_layer(dim)
151
+ self.attn = Attention(
152
+ dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
153
+ attn_drop=attn_drop, proj_drop=drop, attn_head_dim=attn_head_dim)
154
+ # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
155
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
156
+ self.norm2 = norm_layer(dim)
157
+ mlp_hidden_dim = int(dim * mlp_ratio)
158
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
159
+
160
+ if init_values > 0:
161
+ self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
162
+ self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
163
+ else:
164
+ self.gamma_1, self.gamma_2 = None, None
165
+
166
+ def forward(self, x):
167
+ if self.gamma_1 is None:
168
+ x = x + self.drop_path(self.attn(self.norm1(x)))
169
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
170
+ else:
171
+ x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x)))
172
+ x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
173
+ return x
174
+
175
+
176
+ class PatchEmbed(nn.Module):
177
+ """ Image to Patch Embedding
178
+ """
179
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=16, tubelet_size=2):
180
+ super().__init__()
181
+ img_size = to_2tuple(img_size)
182
+ patch_size = to_2tuple(patch_size)
183
+ self.tubelet_size = int(tubelet_size)
184
+ num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * (num_frames // self.tubelet_size)
185
+ self.img_size = img_size
186
+ self.patch_size = patch_size
187
+ self.num_patches = num_patches
188
+ self.proj = nn.Conv3d(
189
+ in_channels=in_chans, out_channels=embed_dim,
190
+ kernel_size=(self.tubelet_size, patch_size[0], patch_size[1]),
191
+ stride=(self.tubelet_size, patch_size[0], patch_size[1])
192
+ )
193
+ # print('umt:', f'Num of patches: {num_patches}')
194
+
195
+ def forward(self, x, **kwargs):
196
+ B, C, T, H, W = x.shape
197
+ # FIXME look at relaxing size constraints
198
+ # assert H == self.img_size[0] and W == self.img_size[1], \
199
+ # f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
200
+ x = self.proj(x).flatten(2).transpose(1, 2)
201
+ return x
202
+
203
+ # sin-cos position encoding
204
+ # https://github.com/jadore801120/attention-is-all-you-need-pytorch/blob/master/transformer/Models.py#L31
205
+ def get_sinusoid_encoding_table(n_position, d_hid, ckpt_num_frame=-1, cur_frame=12):
206
+ ''' Sinusoid position encoding table '''
207
+ # TODO: make it with torch instead of numpy
208
+ def get_position_angle_vec(position):
209
+ return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
210
+
211
+ if ckpt_num_frame != -1 and ckpt_num_frame != cur_frame:
212
+ # print('umt:', f"Interpolate position embedding")
213
+ # print('umt:', f"Testing frame: {cur_frame}")
214
+ # print('umt:', f"Checkpoint frame: {ckpt_num_frame}")
215
+
216
+ T = ckpt_num_frame # checkpoint frame
217
+ new_T = cur_frame # testing frame
218
+ n_position = n_position // new_T * T # generate checkpoint position embedding
219
+ sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
220
+ sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
221
+ sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
222
+ sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
223
+ # interpolate
224
+ P = int((n_position // T) ** 0.5)
225
+ C = d_hid
226
+ sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
227
+ sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T
228
+ sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear')
229
+ sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C
230
+ sinusoid_table = sinusoid_table.flatten(1, 3)
231
+ return sinusoid_table
232
+ else:
233
+ sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
234
+ sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
235
+ sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
236
+ return torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
237
+
238
+
239
+ def get_sinusoid_encoding_table2(n_position=784, d_hid=1024, cur_frame=8, ckpt_num_frame=4, pre_n_position=784):
240
+ ''' Sinusoid position encoding table '''
241
+ # TODO: make it with torch instead of numpy
242
+ def get_position_angle_vec(position):
243
+ return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]
244
+
245
+ # generate checkpoint position embedding
246
+ sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(pre_n_position)])
247
+ sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i
248
+ sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1
249
+ sinusoid_table = torch.tensor(sinusoid_table, dtype=torch.float, requires_grad=False).unsqueeze(0)
250
+
251
+ # print(f"n_position: {n_position}")
252
+ # print(f"pre_n_position: {pre_n_position}")
253
+
254
+ if n_position != pre_n_position:
255
+ T = ckpt_num_frame # checkpoint frame
256
+ P = 14 # checkpoint size
257
+ C = d_hid
258
+ new_P = int((n_position // cur_frame) ** 0.5) # testing size
259
+ # print(f'Pretraining uses 14x14, but current version is {new_P}x{new_P}')
260
+ # print(f'Interpolate the position embedding')
261
+ sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
262
+ sinusoid_table = sinusoid_table.reshape(-1, P, P, C).permute(0, 3, 1, 2)
263
+ sinusoid_table = torch.nn.functional.interpolate(
264
+ sinusoid_table, size=(new_P, new_P), mode='bicubic', align_corners=False)
265
+ # BT, C, H, W -> BT, H, W, C -> B, T, H, W, C
266
+ sinusoid_table = sinusoid_table.permute(0, 2, 3, 1).reshape(-1, T, new_P, new_P, C)
267
+ sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C
268
+
269
+ if cur_frame != ckpt_num_frame:
270
+ # print(f'Pretraining uses 4 frames, but current frame is {cur_frame}')
271
+ # print(f'Interpolate the position embedding')
272
+ T = ckpt_num_frame # checkpoint frame
273
+ new_T = cur_frame # testing frame
274
+ # interpolate
275
+ P = int((n_position // cur_frame) ** 0.5) # testing size
276
+ C = d_hid
277
+ sinusoid_table = sinusoid_table.reshape(-1, T, P, P, C)
278
+ sinusoid_table = sinusoid_table.permute(0, 2, 3, 4, 1).reshape(-1, C, T) # BHW, C, T
279
+ sinusoid_table = torch.nn.functional.interpolate(sinusoid_table, size=new_T, mode='linear')
280
+ sinusoid_table = sinusoid_table.reshape(1, P, P, C, new_T).permute(0, 4, 1, 2, 3) # B, T, H, W, C
281
+ sinusoid_table = sinusoid_table.flatten(1, 3) # B, THW, C
282
+
283
+ return sinusoid_table
284
+
285
+
286
+ class PretrainVisionTransformerEncoder(nn.Module):
287
+ """ Vision Transformer with support for patch or hybrid CNN input stage
288
+ """
289
+ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, depth=12,
290
+ num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
291
+ drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None, num_frames=8, tubelet_size=1,
292
+ use_learnable_pos_emb=False,
293
+ use_checkpoint=False, checkpoint_num=0,
294
+ ckpt_num_frame=-1, with_ln=True, return_index=-1
295
+ ):
296
+ super().__init__()
297
+ self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
298
+ self.patch_embed = PatchEmbed(
299
+ img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
300
+ num_frames=num_frames, tubelet_size=tubelet_size
301
+ )
302
+ num_patches = self.patch_embed.num_patches
303
+ self.depth = depth + return_index + 1
304
+ self.use_checkpoint = use_checkpoint
305
+ self.checkpoint_num = checkpoint_num
306
+ # print('umt:', f"Use checkpoint: {use_checkpoint}")
307
+ # print('umt:', f"Checkpoint number: {checkpoint_num}")
308
+ # print('UMT:', f"Real runing depth: {self.depth}")
309
+
310
+ # TODO: Add the cls token
311
+ if use_learnable_pos_emb:
312
+ self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
313
+ self.img_pos_embed = nn.Parameter(torch.zeros(1, num_patches//(num_frames//tubelet_size) + 1, embed_dim))
314
+ else:
315
+ # sine-cosine positional embeddings
316
+ if img_size != 224:
317
+ self.pos_embed = get_sinusoid_encoding_table2(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size)
318
+ self.img_pos_embed = get_sinusoid_encoding_table2(num_patches//(num_frames//tubelet_size), embed_dim, cur_frame=1, ckpt_num_frame=1, pre_n_position=14*14)
319
+ else:
320
+ self.pos_embed = get_sinusoid_encoding_table(num_patches, embed_dim, ckpt_num_frame=ckpt_num_frame, cur_frame=num_frames//tubelet_size)
321
+ self.img_pos_embed = get_sinusoid_encoding_table(num_patches//(num_frames//tubelet_size), embed_dim)
322
+
323
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
324
+ self.blocks = nn.ModuleList([
325
+ Block(
326
+ dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
327
+ drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
328
+ init_values=init_values)
329
+ for i in range(self.depth)])
330
+
331
+ if with_ln:
332
+ self.vision_layernorm = nn.LayerNorm(embed_dim, eps=1e-12)
333
+ else:
334
+ self.vision_layernorm = nn.Identity()
335
+
336
+ if use_learnable_pos_emb:
337
+ trunc_normal_(self.pos_embed, std=.02)
338
+
339
+ @torch.jit.ignore
340
+ def no_weight_decay(self):
341
+ return {'pos_embed', 'cls_token'}
342
+
343
+ def forward_features(self, x, use_image=False):
344
+ x = self.patch_embed(x)
345
+
346
+ if use_image:
347
+ x = x + self.img_pos_embed.type_as(x).to(x.device).clone().detach()
348
+ else:
349
+ x = x + self.pos_embed.type_as(x).to(x.device).clone().detach()
350
+
351
+ B, _, C = x.shape
352
+ x_vis = x
353
+
354
+ for idx, blk in enumerate(self.blocks):
355
+ if self.use_checkpoint and idx < self.checkpoint_num:
356
+ x_vis = checkpoint.checkpoint(blk, x_vis)
357
+ else:
358
+ x_vis = blk(x_vis)
359
+
360
+ # with ln ot not
361
+ x_vis = self.vision_layernorm(x_vis)
362
+ return x_vis
363
+
364
+ def forward(self, x, use_image=False):
365
+ x_vis = self.forward_features(x, use_image)
366
+ return x_vis
367
+
368
+
369
+ class PretrainVisionTransformer(nn.Module):
370
+ """ Vision Transformer with support for patch or hybrid CNN input stage
371
+ """
372
+ def __init__(self,
373
+ img_size=224,
374
+ patch_size=16,
375
+ encoder_in_chans=3,
376
+ encoder_embed_dim=768,
377
+ encoder_depth=12,
378
+ encoder_num_heads=12,
379
+ mlp_ratio=4.,
380
+ qkv_bias=True,
381
+ qk_scale=None,
382
+ drop_rate=0.,
383
+ attn_drop_rate=0.,
384
+ drop_path_rate=0.,
385
+ norm_layer=partial(nn.LayerNorm, eps=1e-6),
386
+ init_values=0.,
387
+ use_learnable_pos_emb=False,
388
+ num_frames=8,
389
+ tubelet_size=1,
390
+ use_checkpoint=False,
391
+ checkpoint_num=0,
392
+ ckpt_num_frame=4, # the pretrained model uses 4 frames
393
+ return_index=-1,
394
+ with_ln=False
395
+ ):
396
+ super().__init__()
397
+
398
+ self.encoder = PretrainVisionTransformerEncoder(
399
+ img_size=img_size,
400
+ patch_size=patch_size,
401
+ in_chans=encoder_in_chans,
402
+ embed_dim=encoder_embed_dim,
403
+ depth=encoder_depth,
404
+ num_heads=encoder_num_heads,
405
+ mlp_ratio=mlp_ratio,
406
+ qkv_bias=qkv_bias,
407
+ qk_scale=qk_scale,
408
+ drop_rate=drop_rate,
409
+ attn_drop_rate=attn_drop_rate,
410
+ drop_path_rate=drop_path_rate,
411
+ norm_layer=norm_layer,
412
+ init_values=init_values,
413
+ num_frames=num_frames,
414
+ tubelet_size=tubelet_size,
415
+ use_learnable_pos_emb=use_learnable_pos_emb,
416
+ use_checkpoint=use_checkpoint,
417
+ checkpoint_num=checkpoint_num,
418
+ ckpt_num_frame=ckpt_num_frame,
419
+ with_ln=with_ln,
420
+ return_index=return_index
421
+ )
422
+ # print('umt:', f'With LN: {with_ln}')
423
+ # print('UMT:', f'Total {encoder_depth} layer')
424
+ # print('UMT:', f'Return {encoder_depth+return_index+1}-th layer')
425
+
426
+ self.apply(self._init_weights)
427
+
428
+ def _init_weights(self, m):
429
+ if isinstance(m, nn.Linear):
430
+ nn.init.xavier_uniform_(m.weight)
431
+ if isinstance(m, nn.Linear) and m.bias is not None:
432
+ nn.init.constant_(m.bias, 0)
433
+ elif isinstance(m, nn.LayerNorm):
434
+ nn.init.constant_(m.bias, 0)
435
+ nn.init.constant_(m.weight, 1.0)
436
+
437
+ @torch.jit.ignore
438
+ def no_weight_decay(self):
439
+ return {'pos_embed', 'cls_token', 'clip_pos_embed'}
440
+
441
+ def forward(self, x, use_image=False):
442
+ T = x.shape[2]
443
+ x_vis = self.encoder(x, use_image) # [B, N_vis, C_e]
444
+ B, TL, C = x_vis.shape
445
+ x_vis = x_vis.view(B, T, TL // T, C)
446
+
447
+ return x_vis
448
+
449
+
450
+
451
+
452
+
453
+
454
+
455
+ class UMTImageProcessor:
456
+ def __init__(self, image_mean=(0.485, 0.456, 0.406), image_std=(0.229, 0.224, 0.225), size=(224, 224), crop_size: Dict[str, int] = None, resample=PILImageResampling.BICUBIC, rescale_factor=1 / 255, data_format=ChannelDimension.FIRST):
457
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
458
+ crop_size = get_size_dict(crop_size, default_to_square=True, param_name="crop_size")
459
+
460
+ self.image_mean = image_mean
461
+ self.image_std = image_std
462
+ self.size = size
463
+ self.resample = resample
464
+ self.rescale_factor = rescale_factor
465
+ self.data_format = data_format
466
+ self.crop_size = crop_size
467
+
468
+ def preprocess(self, images, return_tensors, target_size=None):
469
+ if isinstance(images, Image.Image):
470
+ images = [images]
471
+ else:
472
+ # to adapt video data
473
+ images = [to_numpy_array(image) for image in images]
474
+ assert isinstance(images, list)
475
+
476
+ if target_size is None:
477
+ target_size = self.size
478
+
479
+ transforms = [
480
+ convert_to_rgb,
481
+ to_numpy_array,
482
+ partial(resize, size=target_size, resample=self.resample, data_format=self.data_format),
483
+ partial(rescale, scale=self.rescale_factor, data_format=self.data_format),
484
+ partial(normalize, mean=self.image_mean, std=self.image_std, data_format=self.data_format),
485
+ partial(to_channel_dimension_format, channel_dim=self.data_format, input_channel_dim=self.data_format),
486
+ ]
487
+
488
+ images = reduce(lambda x, f: [*map(f, x)], transforms, images)
489
+ data = {"pixel_values": images}
490
+
491
+ return BatchFeature(data=data, tensor_type=return_tensors)
492
+
493
+
494
+ class UMTVisionConfig:
495
+ model_type = "umt_vision_model"
496
+
497
+ def __init__(
498
+ self,
499
+ num_frames=4,
500
+ hidden_size=1024,
501
+ num_hidden_layers=24,
502
+ num_attention_heads=16,
503
+ num_channels=3,
504
+ image_size=224,
505
+ patch_size=16,
506
+ return_idx=-2
507
+ # **kwargs,
508
+ ):
509
+ # super().__init__(**kwargs)
510
+ self.num_frames = num_frames
511
+ self.hidden_size = hidden_size
512
+ self.num_hidden_layers = num_hidden_layers
513
+ self.num_attention_heads = num_attention_heads
514
+ self.num_channels = num_channels
515
+ self.patch_size = patch_size
516
+ self.image_size = image_size
517
+ self.return_idx = return_idx
518
+
519
+
520
+ def build_vit(config, pt_type='origin'):
521
+ model = PretrainVisionTransformer(
522
+ img_size=config.image_size,
523
+ patch_size=16,
524
+ encoder_embed_dim=1024,
525
+ encoder_depth=24,
526
+ encoder_num_heads=16,
527
+ drop_path_rate=0.,
528
+ num_frames=config.num_frames,
529
+ tubelet_size=1,
530
+ use_checkpoint=False,
531
+ checkpoint_num=24,
532
+ return_index=config.return_idx,
533
+ with_ln=True, # merge vision_layernorm in it
534
+ )
535
+
536
+ # no need to load pt
537
+
538
+ return model
539
+
540
+
541
+
542
+ class UMTVisionTower(nn.Module):
543
+ def __init__(self, vision_tower, vision_tower_cfg, delay_load=False, pt_type='origin', image_size=224):
544
+ super().__init__()
545
+
546
+ self.is_loaded = False
547
+ self.pt_type = pt_type
548
+
549
+ self.config = UMTVisionConfig(num_frames=vision_tower_cfg.mm_local_num_frames, return_idx=vision_tower_cfg.mm_vision_select_layer, image_size=image_size)
550
+
551
+ self.vision_tower_name = vision_tower
552
+
553
+ self.image_processor = UMTImageProcessor(size=(image_size, image_size))
554
+
555
+ if not delay_load:
556
+ print(f"Loading vision tower: {vision_tower}")
557
+ self.load_model()
558
+ elif getattr(vision_tower_cfg, "unfreeze_mm_vision_tower", False):
559
+ # TODO: better detector is needed.
560
+ print(f"The checkpoint seems to contain `vision_tower` weights: `unfreeze_mm_vision_tower`: True.")
561
+ self.load_model()
562
+ elif hasattr(vision_tower_cfg, "mm_tunable_parts") and "mm_vision_tower" in vision_tower_cfg.mm_tunable_parts:
563
+ print(f"The checkpoint seems to contain `vision_tower` weights: `mm_tunable_parts` contains `mm_vision_tower`.")
564
+ self.load_model()
565
+ else:
566
+ self.cfg_only = self.config
567
+
568
+ def load_model(self, device_map=None):
569
+ if self.is_loaded:
570
+ print("{} is already loaded, `load_model` called again, skipping.".format(self.vision_tower_name))
571
+ return
572
+
573
+ self.vision_tower = build_vit(self.config, pt_type=self.pt_type)
574
+ self.vision_tower.requires_grad_(False)
575
+
576
+ self.is_loaded = True
577
+
578
+ def forward(self, images):
579
+ if type(images) is list:
580
+ raise NotImplementedError
581
+ else:
582
+ # input: B T C H W
583
+ # output: B T*L C
584
+ T = images.shape[1]
585
+ images = images.permute(0, 2, 1, 3, 4)
586
+ image_embeds = self.vision_tower(images, use_image=(T == 1))
587
+ B, T, L, C = image_embeds.shape
588
+ image_embeds = image_embeds.reshape(B, -1, C)
589
+
590
+ return image_embeds
591
+
592
+ @property
593
+ def dummy_feature(self):
594
+ return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
595
+
596
+ @property
597
+ def dtype(self):
598
+ for p in self.vision_tower.parameters():
599
+ return p.dtype
600
+
601
+ @property
602
+ def device(self):
603
+ for p in self.vision_tower.parameters():
604
+ return p.device
605
+
606
+ @property
607
+ def hidden_size(self):
608
+ return self.config.hidden_size
609
+
610
+ @property
611
+ def num_patches(self):
612
+ return (self.config.image_size // self.config.patch_size) ** 2
613
+
614
+ @property
615
+ def num_patches_per_side(self):
616
+ return self.config.image_size // self.config.patch_size
617
+
618
+ @property
619
+ def image_size(self):
620
+ return self.config.image_size
621
+
622
+
623
+ def build_vision_tower(vision_tower_cfg, **kwargs):
624
+ vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
625
+
626
+
627
+ if "umt-hd" in vision_tower:
628
+ return UMTVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, image_size=448, **kwargs)
629
+ elif "umt" in vision_tower:
630
+ return UMTVisionTower(vision_tower, vision_tower_cfg=vision_tower_cfg, **kwargs)
631
+
632
+ raise ValueError(f"Unknown vision tower: {vision_tower}")
vocab.json ADDED
The diff for this file is too large to render. See raw diff