File size: 105,353 Bytes
6c5dce9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
import torch
import types
import inspect
import importlib
import transformers
import torch.nn as nn
from transformers import Cache, GenerationConfig

from typing import Any, Dict, List, Optional, Tuple, Union
from transformers.modeling_utils import  PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers import Cache, GenerationConfig


UNSUPPORTED_GENERATION_ARGS = [
    "cache_implementation",  # cache-related arguments, here we always use SepCache
    "cache_config",
    "return_legacy_cache",
    "num_beams",  # beam search (and cousin techniques) are not supported
    "compile_config",  # SepCache doesn't support torch.compile
    "assistant_model",  # it also doesn't support speculative decoding
]

##################################################### Functions to Patch #######################################################
def truncate_input_ids_4_autoregression(input_ids, key_states):
    if input_ids.shape[-1] != key_states.shape[-2]:
        assert input_ids.shape[-1] >= key_states.shape[-2]
        truncated_input_ids = input_ids[..., -key_states.shape[-2]: ]
        return truncated_input_ids
    else:
        return input_ids


def llama_atten_forward(
    self,
    hidden_states: torch.Tensor,
    position_embeddings: tuple[torch.Tensor, torch.Tensor],
    attention_mask: Optional[torch.Tensor],
    past_key_value: Optional[Cache] = None,
    cache_position: Optional[torch.LongTensor] = None,
    **kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
    input_shape = hidden_states.shape[:-1]

    if hasattr(self, "head_dim"):
        head_dim = self.head_dim
    elif hasattr(self, "head_size"):
        head_dim = self.head_size

    hidden_shape = (*input_shape, -1, head_dim)

    query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
    key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
    value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)


    ###########################SepCache########################
    assert isinstance(past_key_value,  SepCache), f"`past_key_value` must be of the type: `SepCache`."
    APPLY_PE_SHIFT = past_key_value.APPLY_PE_SHIFT
    APPLY_PES_INSIDE = past_key_value.APPLY_PES_INSIDE    
    ###########################################################


    ########################Monkey Patching####################
    module = importlib.import_module(self.__module__)
                
    apply_rotary_pos_emb = module.apply_rotary_pos_emb
    rotate_half = module.rotate_half
    eager_attention_forward = module.eager_attention_forward
    ALL_ATTENTION_FUNCTIONS = module.ALL_ATTENTION_FUNCTIONS
    ###########################################################

    if not APPLY_PE_SHIFT:
        cos, sin = position_embeddings            
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)

    if past_key_value is not None:
        # ##################################################Default#########################################################
        # sin and cos are specific to RoPE models; cache_position needed for the static cache
        # cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}            
        # key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
        # ##################################################################################################################

        ##################################################SepCache#########################################################
        # sin and cos are specific to RoPE models; position_ids needed for the static cache
        if APPLY_PE_SHIFT and (not APPLY_PES_INSIDE):
            ### At least the shifted `sin` and `cos` should be properly provided (not `None`).
            cache_kwargs = {"sin": sin, "cos": cos, "cos_q": cos_q, "sin_q": sin_q, "cache_position": cache_position, "partial_rotation_size": None }
        else:
            cache_kwargs = {}


        if "kwargs" in locals():
            pass
        elif "flash_attn_kwargs" in locals():
            kwargs = flash_attn_kwargs
        else:
            raise NameError("`kwargs` or `flash_attn_kwargs` should be given and they need to contain `sepllm_kwargs` (which contains `input_ids`) and `position_ids`.")

        if "input_ids" not in locals():
            if "input_ids" in kwargs:
                input_ids = kwargs.get("input_ids", None)
            else:
                sepllm_kwargs = kwargs.get("sepllm_kwargs", None)
                assert sepllm_kwargs is not None, f"`sepllm_kwargs` must be provided when `input_ids` is not given."
                input_ids = sepllm_kwargs.get("input_ids", None)
            
            assert input_ids is not None, f"`input_ids` must be properly provided directly or through `sepllm_kwargs` when calling `update()` in `SepCache`." 

        if "position_ids" not in locals():
            position_ids = kwargs.get("position_ids")            
                    
        assert input_ids is not None, f"`input_ids` must be properly provided when calling `update()` in `SepCache`." 
        bsz, q_len, _ = hidden_states.size()                                    

        input_ids = truncate_input_ids_4_autoregression(input_ids = input_ids, key_states = key_states )

        if APPLY_PE_SHIFT:
            key_states, value_states, query_states = past_key_value.update(                
                key_states = key_states,
                value_states = value_states,
                query_states = query_states,
                input_ids = input_ids,
                layer_idx = self.layer_idx,
                position_ids = position_ids,        
                PREFILLING_FLAG = q_len > 1, 
                cache_kwargs = cache_kwargs )

        else:
            key_states, value_states  =  past_key_value.update(
                key_states = key_states,
                value_states = value_states,
                input_ids = input_ids,
                layer_idx = self.layer_idx,
                position_ids = position_ids,
                PREFILLING_FLAG = q_len > 1, 
                cache_kwargs = cache_kwargs )
                                                        
        seq_len = past_key_value.get_usable_length(self.layer_idx)

        if attention_mask is not None:                
            attention_mask = attention_mask[..., :seq_len]
        ##################################################################################################################


    attention_interface: Callable = eager_attention_forward
    if self.config._attn_implementation != "eager":
        attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

    attn_output, attn_weights = attention_interface(
        self,
        query_states,
        key_states,
        value_states,
        attention_mask,
        dropout=0.0 if not self.training else self.attention_dropout,
        scaling=self.scaling,
        **kwargs,
    )

    attn_output = attn_output.reshape(*input_shape, -1).contiguous()
    attn_output = self.o_proj(attn_output)
    return attn_output, attn_weights


def _validate_model_kwargs(self, model_kwargs: dict[str, Any]):
    """Validates model kwargs for generation. Generate argument typos will also be caught here."""
    # If a `Cache` instance is passed, checks whether the model is compatible with it
    if isinstance(model_kwargs.get("past_key_values", None), Cache) and not self._supports_cache_class:
        raise ValueError(
            f"{self.__class__.__name__} does not support an instance of `Cache` as `past_key_values`. Please "
            "check the model documentation for supported cache formats."
        )

    # Excludes arguments that are handled before calling any model function
    if self.config.is_encoder_decoder:
        for key in ["decoder_input_ids"]:
            model_kwargs.pop(key, None)

    unused_model_args = []
    model_args = set(inspect.signature(self.prepare_inputs_for_generation).parameters)
    # `kwargs`/`model_kwargs` is often used to handle optional forward pass inputs like `attention_mask`. If
    # `prepare_inputs_for_generation` doesn't accept them, then a stricter check can be made ;)
    if "kwargs" in model_args or "model_kwargs" in model_args:
        model_args |= set(inspect.signature(self.forward).parameters)

    # Encoder-Decoder models may also need Encoder arguments from `model_kwargs`
    if self.config.is_encoder_decoder:
        base_model = getattr(self, self.base_model_prefix, None)

        # allow encoder kwargs
        encoder = getattr(self, "encoder", None)
        # `MusicgenForConditionalGeneration` has `text_encoder` and `audio_encoder`.
        # Also, it has `base_model_prefix = "encoder_decoder"` but there is no `self.encoder_decoder`
        # TODO: A better way to handle this.
        if encoder is None and base_model is not None:
            encoder = getattr(base_model, "encoder", None)

        if encoder is not None:
            encoder_model_args = set(inspect.signature(encoder.forward).parameters)
            model_args |= encoder_model_args

        # allow decoder kwargs
        decoder = getattr(self, "decoder", None)
        if decoder is None and base_model is not None:
            decoder = getattr(base_model, "decoder", None)

        if decoder is not None:
            decoder_model_args = set(inspect.signature(decoder.forward).parameters)
            model_args |= {f"decoder_{x}" for x in decoder_model_args}

    for key, value in model_kwargs.items():
        # #############################Default###########################
        # if value is not None and key not in model_args:
        #     unused_model_args.append(key)
        # ###############################################################

        ###############################SepCache###########################
        if (value is not None) and (key not in model_args) and ("sep" not in str(key).lower()):
            unused_model_args.append(key)
        ###################################################################

    if unused_model_args:
        raise ValueError(
            f"The following `model_kwargs` are not used by the model: {unused_model_args} (note: typos in the"
            " generate arguments will also show up in this list)"
        )

#############################################################End################################################################




########################################################## SepCache ############################################################
class SepCache(Cache):
    """
    A cache as described in the [SepLLM paper - ICML 2025](https://arxiv.org/abs/2412.12094). In the training phase, 
    SepLLM condenses the segment information into the KV of the separator that divides the segment. In the inference phase, the 
    corresponding SepCache only needs to store the KVs of initial tokens, separator tokens, and recent tokens for generation.

    It stores the Key and Value states as lists of tensors, two lists for each layer. The expected shape for each tensor is
    `[batch_size, num_heads, seq_len, head_dim]`.

    Frequently-Used Parameters:

        `init_cache_size: Union[int, List]`:
            The maximum number of KVs to be stored for initial tokens.
            In the paper, the hyperparameter `a` is an abbreviated alias for `self.init_cache_size`.                
                
        `sep_cache_size: Union[int, List]`:
            The maximum number of KVs to be stored for separator tokens.
            In the paper, the hyperparameter `s` is an abbreviated alias for `self.sep_cache_size`.

        `local_size: Union[int, List]`: 
            The maximum number of KVs to be stored for local tokens (i.e., sliding window).
            In the paper, the hyperparameter `w` is an abbreviated alias for `self.local_size`.

        `cache_size: Union[int, List]`:    
            The maximum number of KVs to be stored for all the tokens, i.e., the size for the whole KV cache.  
            In the paper, the hyperparameter `c` is an abbreviated alias for `self.cache_size`.

        Concerning these four parameters above:
            When a list is passed (its length must be `layer_num`), it represents different values for each layer. 
            When an integer is passed, it means the setting is the same for all layers.
        
        
        `USE_MAX_SEP_CACHE: bool`: 
            If True, it means we only keep at most `self.sep_cache_size` seperators' KVs.  
            If the number exceeds this limit, older separator's KVs will be discarded, keeping only the most recent `self.sep_cache_size` KVs. 
            In the paper, the hyperparameter `s` is an abbreviated alias for `self.sep_cache_size`.
          
        `separator_token_ids: List[int]`:
            The token ids of the separator tokens for the current model's tokenizer.            
            We have some examples, such as the Llama-3 series models, where setting `model_type='llama'` allows you 
                to skip setting `separator_token_ids` and `PADDING_ID` (SepCache will auto-fill them).

        `PADDING_ID: int`:
            The token id of the padding token. You can just set `PADDING_ID` to the id of "<|endoftext|>" token of the tokenizer for the pretrained model.

    Important Note:
        When `cache_size` and `local_size` are set to infinity (i.e., sufficiently large positive integers), and `USE_MAX_SEP_CACHE` is `False`, `SepCache` degenerates into a regular Cache. 
        However, you must always ensure that `init_cache_size` + `sep_cache_size` + `local_size` + `left_padding_offset` < `cache_size`. 
        Here, `left_padding_offset` denotes the number of padding tokens in the record with the largest left paddings within a runtime batch. `left_padding_offset` can only be determined at runtime.        
        To guarantee the above inequality always holds during runtime, when setting, you can intentionally create a sufficient margin between both sides of the following inequality:
            `init_cache_size` + `sep_cache_size` + `local_size`  < `cache_size`, i.e., `a`+`s`+`w`<`c` in the [SepLLM paper - ICML 2025]
            to leave room for `left_padding_offset`.

        Please refer to the `__init__` function's comments for more details on the parameters.
            
    Example:

        ```python        
        >>> from transformers import AutoTokenizer, AutoModelForCausalLM, SepCache
        >>> import torch
        >>> from huggingface_hub import login
        >>> login("hf_xxxXXXxxx")


        >>> def to_cuda(a_dict: dict) -> dict:
        >>>    new_dict = {}    
        >>>    for k,v in a_dict.items():
        >>>        if isinstance(v, torch.Tensor):
        >>>            new_dict[k] = v.cuda()
        >>>        else:
        >>>            new_dict[k] = v
        >>>    return new_dict

        >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", attn_implementation="flash_attention_2", device_map="cuda:0")
        >>> model.bfloat16().cuda()
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
        >>> inputs = tokenizer(text="My name is Llama 3", return_tensors="pt")
        >>> inputs = to_cuda(inputs)
        >>> # Prepare a cache and pass it to model's forward; `layer_num` is the number of layers for the pretrained model.
        >>> past_key_values = SepCache(init_cache_size=4, sep_cache_size=128, local_size=256, cache_size=512, layer_num=32, USE_MAX_SEP_CACHE=True, model_type='llama')
        >>> # `separator_token_ids` and `PADDING_ID` must also be provided if you are not using `model_type='llama'` like this demo.
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> outputs.past_key_values # access SepCache filled with keys/values
        SepCache()
        ```

        ```python
        >>> ## When using the `update` function of SepCache to update the keys/values and the past token ids (necessary in SepCache), the current `input_ids` must also be provided.        
        >>> key_states, value_states = past_key_values.update(                
                    key_states = key_states,
                    value_states = value_states,    
                    input_ids = input_ids,
                    layer_idx = layer_idx,     
                    PREFILLING_FLAG = q_len > 1, ## `q_len` is the sequence length of the current `query_states`
                    )

        ```
        For detailed usage instructions, please refer to https://github.com/HKUDS/SepLLM
    """
    # is_sliding = True
    
    @staticmethod
    def slice_on_1d(x, start, end):
        return x[:, start:end, ...]
    @staticmethod
    def slice_on_2d(x, start, end):
        return x[:, :, start:end, ...]
    @staticmethod
    def slice_on_3d(x, start, end):
        return x[:, :, :, start:end, ...]


    @staticmethod
    def sep_1bat_select_on_1d(x, Bid, sep_index, min_sep_num=None, max_sep_num=None, SEP_PADDING_IN_BATCH=True):    
        """
        For the record with index `Bid` in a batch, extract the K/V states corresponding to the separators on dimension 1. 
           If `SEP_PADDING_IN_BATCH=True`, pad to the longest length (i.e. `max_sep_num`); 
           otherwise, truncate to the shortest length (i.e. `min_sep_num`). 
        """
        sep_index = sep_index.to(x.device)

        if SEP_PADDING_IN_BATCH: ## Need padding
            assert max_sep_num is not None, f"if `SEP_PADDING_IN_BATCH=True`, `max_sep_num` should not be None"
            new_x_sep =  x[Bid, sep_index, ...]   # # batch x seqlen x head x dim  -->  sep_num x head x dim  
            padding_num = max_sep_num -  new_x_sep.shape[0]
            if padding_num > 0 :
                assert padding_num <= x.shape[1], f"`padding_num` should be <= `x.shape[1]`, i.e.  x's seqlen"
                new_x_pad = x[Bid, -padding_num: , ...]    #  padding_num x head x dim     
                return torch.cat([new_x_sep, new_x_pad ] , dim=0) # max_sep_num x head x dim 
            else:
                return new_x_sep #  max_sep_num x head x dim 

        if min_sep_num is None:
            return x[Bid, sep_index, ...]  # # batch x seqlen x head x dim -->  sep_num x head x dim    
        else: ## `min_sep_num` is provided. Need truncation
            new_x =  x[Bid, sep_index, ...]   # # batch x seqlen x head x dim -->  sep_num x head x dim               
            return new_x[ :min_sep_num, ...] # #  min_sep_num x head x dim      


    @staticmethod
    def sep_1bat_select_on_2d(x, Bid, sep_index, min_sep_num=None, max_sep_num=None, SEP_PADDING_IN_BATCH=True):    
        """
        For the record with index `Bid` in a batch, extract the K/V states corresponding to the separators on dimension 2. 
           If `SEP_PADDING_IN_BATCH=True`, pad to the longest length (i.e. `max_sep_num`); 
           otherwise, truncate to the shortest length (i.e. `min_sep_num`). 
        """
        sep_index = sep_index.to(x.device)

        if SEP_PADDING_IN_BATCH: ## Need padding
            assert max_sep_num is not None, f"if `SEP_PADDING_IN_BATCH=True`, `max_sep_num` should not be None"
            new_x_sep =  x[Bid, :, sep_index, ...]   # # batch x head x seqlen x dim -->  head x sep_num x dim  
            padding_num = max_sep_num -  new_x_sep.shape[-2]
            if padding_num > 0 :
                assert padding_num<= x.shape[-2], f"`padding_num` should be <= `x.shape[-2]`, i.e.  x's seqlen"
                new_x_pad = x[Bid, :, -padding_num: , ...]    # head x padding_num x dim     
                return torch.cat([new_x_sep, new_x_pad ] , dim=-2) # head x max_sep_num x dim 
            else:
                return new_x_sep # head x max_sep_num x dim 

        if min_sep_num is None:
            return x[Bid, :, sep_index, ...]  # # batch x head x seqlen x dim -->  head x sep_num x dim    
        else: ## `min_sep_num` is provided. Need truncation
            new_x =  x[Bid, :, sep_index, ...]   # # batch x head x seqlen x dim -->  head x sep_num x dim            
            return new_x[:, :min_sep_num, ...] # #  head x min_sep_num x dim      


    @staticmethod
    def sep_1bat_select_on_3d(x, Bid, sep_index, min_sep_num=None, max_sep_num=None, SEP_PADDING_IN_BATCH=True):    
        """
        For the record with index `Bid` in a batch, extract the K/V states corresponding to the separators on dimension 3. 
           If `SEP_PADDING_IN_BATCH=True`, pad to the longest length (i.e. `max_sep_num`); 
           otherwise, truncate to the shortest length (i.e. `min_sep_num`). 
        """        
        sep_index = sep_index.to(x.device)

        if SEP_PADDING_IN_BATCH: ## Need padding
            assert max_sep_num is not None, f"if `SEP_PADDING_IN_BATCH=True`, `max_sep_num` should not be None"
            new_x_sep =  x[Bid, :, :, sep_index, ...]   # # batch x head x dim x seqlen  -->  head x dim x sep_num 
            padding_num = max_sep_num -  new_x_sep.shape[-1]
            if padding_num > 0 :
                assert padding_num <= x.shape[-1], f"`padding_num` should be <= `x.shape[-1]`, i.e.  x's seqlen"
                new_x_pad = x[Bid, :, :, -padding_num:, ...]    # head x dim x padding_num     
                return torch.cat([new_x_sep, new_x_pad] , dim=-1) # head x dim x max_sep_num 
            else:
                return new_x_sep # head x dim x max_sep_num 

        if min_sep_num is None:
            return x[Bid, :, :, sep_index, ...]  # # batch x head x dim x seqlen -->  head x dim x sep_num    
        else: ## `min_sep_num` is provided. Need truncation
            new_x =  x[Bid, :, :, sep_index, ...]   # # batch x head x dim x seqlen -->  head x dim x sep_num          
            return new_x[:, :, :min_sep_num, ...] # #  head x dim x min_sep_num       

    DIM_TO_SLICE = {
        1: slice_on_1d,
        2: slice_on_2d,
        3: slice_on_3d,
    }
    
    BAT_DIM_TO_SELECT = {
        1: sep_1bat_select_on_1d,
        2: sep_1bat_select_on_2d,
        3: sep_1bat_select_on_3d,
    }

    def __init__(self,                                                
                ## For SepLLM                                
                init_cache_size: Union[int, List] = 4,        
                sep_cache_size: Union[int, List] = 64,
                local_size: Union[int, List]=256, 
                cache_size: Union[int, List]=512,    
                SEP_ACCUMULATION: bool = True,
                USE_MAX_SEP_CACHE: bool = False,
                SEP_PADDING_IN_BATCH: bool = False,
                separator_token_ids: List[int] = None, ## required for initialization if `model_type` is not provided.
                PADDING_ID: int = None, ## required for initialization if `model_type` is not provided.

                ## For inheritance & initialization states
                past_tok_ids: List[torch.Tensor] = None,  ## It saves all the token ids corresponding to the saved KVs for all layers in SepCache.                
                key_cache: List[torch.Tensor] = None,          
                value_cache: List[torch.Tensor] = None,

                ## For debugging
                PRINT_KV_RATIO_INSIDE: bool = False,
                print_KV_inside_per_steps: int = 1000,   
                _seen_tokens: int = 0, 
                _kept_kv_ratio: List[Tuple[int]] = None,
                
                ### For positional encoding shifting
                APPLY_PE_SHIFT: bool = False,
                APPLY_PES_INSIDE: bool = True,
                _shifted_position_ids:  List[torch.Tensor] = None,
                _rope_unsqueeze_dim: int = 1, ## The unsqueeze_dim when applying RoPE.
                _rope_seq_dim: int=1, ## The seq_len dimension for the `cos` or `sin` tensors.
                pe_scaling_factor:float = 1.0,
                pe_dim:int=128, ## The number of dims for positional encoding. Typically, just set the `head_dim` to this.
                max_position_embeddings: int = 8192, 
                base: int=10000,  ## The base for RoPE.               
                
                ## For basic transformer architecture
                k_seq_dim: int=2, ## The dimension for seq_len in key tensors
                v_seq_dim: int=2, ## The dimension for seq_len in value tensors
                layer_num: int = None, ## required for initialization

                model_type: str = None,  ## The model type for running the example. choose from ['llama', 'pythia','falcon'].
                device = None          
                 ) -> None:
        """        
        `SEP_ACCUMULATION`: If True, it means we will try to accumulate all the KVs for seperators. If False, only the `new_sep_kv` compressed from the `past_win_kv` will be kept (see function `compress_kv_cache_and_tokids_layer_wise`).
                                                             
        `USE_MAX_SEP_CACHE`: If True, it means we only keep at most `self.sep_cache_size` seperators' KVs.  If the number exceeds this limit, older separator's KVs will be discarded, keeping only the most recent `self.sep_cache_size` KVs. In the paper, the hyperparameter `s` is an abbreviated alias for `self.sep_cache_size`.

        `SEP_PADDING_IN_BATCH`: If True, it means that SepCache will pad separator tokens in other records to be aligned with the record with the most separators in a batch. If False, it means that SepCache will truncate older separator tokens in other records to be aligned with the record with the fewest separators in a batch.
        
        Note: If `SEP_ACCUMULATION=True` and `USE_MAX_SEP_CACHE=False`, as the number of input tokens increases, the number of separators in the KV cache will also accumulate endlessly 
              and `self.cache_size` will also be infinitely expanded (no longer fixed).

              When `SEP_PADDING_IN_BATCH=True` is used in combination with `USE_MAX_SEP_CACHE=False` and `SEP_ACCUMULATION=True`, the KV cache will accumulate indefinitely, 
              and since `SEP_PADDING_IN_BATCH=True`, the KVs of all separators will be retained (rather than being truncated).


        For detailed usage instructions, please refer to https://github.com/HKUDS/SepLLM
        """    

        super().__init__()               
        if (key_cache is not None) or (value_cache is not None) or (past_tok_ids is not None):
            assert isinstance(key_cache, list)
            assert isinstance(value_cache, list)
            assert isinstance(past_tok_ids, list), f"For SepCache, if `key_cache` and `value_cache` are given (e.g., provided from legacy `past_key_values`), `past_tok_ids` corresponding to `key_cache` and `value_cache` must also be provided to initialize SepCache."

            assert len(key_cache) == len(past_tok_ids), f"The length of `key_cache` ({len(key_cache)}) should be equal to that of `past_tok_ids` ({len(past_tok_ids)})."
            assert len(value_cache) == len(past_tok_ids), f"The length of `value_cache` ({len(value_cache)}) should be equal to that of `past_tok_ids` ({len(past_tok_ids)})."
        assert layer_num is not None, f"`layer_num` must be provided according to the pretrained model."

        ## For basic parameters & states    
        self.key_cache: List[torch.Tensor] = key_cache if key_cache is not None else []
        self.value_cache: List[torch.Tensor] = value_cache if value_cache is not None else []    

        self.k_seq_dim = k_seq_dim ## The dimension for the seq_len in key states. Typically, 2.
        self.v_seq_dim = v_seq_dim ## The dimension for the seq_len in value states. Typically, 2.

        self.k_slice = self.DIM_TO_SLICE[k_seq_dim]
        self.v_slice = self.DIM_TO_SLICE[v_seq_dim]
        
        self.k_bat_dim_select = self.BAT_DIM_TO_SELECT[k_seq_dim]
        self.v_bat_dim_select = self.BAT_DIM_TO_SELECT[v_seq_dim]
        self._seen_tokens: int = _seen_tokens  # Used in `generate` to keep tally of how many tokens the cache has seen as well as performing statistics.
        self.layer_num =  layer_num
        self.device = device # Deprecated


        ## For debugging
        self.PRINT_KV_RATIO_INSIDE = PRINT_KV_RATIO_INSIDE
        self.print_KV_inside_per_steps = print_KV_inside_per_steps
        self._print_kv_ratio_count = 0
        self._kept_kv_ratio: List[Tuple[int]] = _kept_kv_ratio if _kept_kv_ratio is not None else []   

        ## For Streaming SepLLM
        self.past_tok_ids: List[torch.Tensor] = past_tok_ids if past_tok_ids is not None else []  ## It saves all the token ids corresponding to the saved KVs for all layers in SepCache      
        self.left_padding_offset = None
        self._set_layer_wise_attribute("init_cache_size", init_cache_size, layer_num)
        self._set_layer_wise_attribute("local_size", local_size, layer_num)
        self._set_layer_wise_attribute("cache_size", cache_size, layer_num)
        self._set_layer_wise_attribute("sep_cache_size", sep_cache_size, layer_num)
        self._set_layer_wise_attribute("sep_exrange", 0, layer_num) # runtime right boundary for separators, excluded
        self._set_layer_wise_attribute("max_sep_exidx", self._list_element_add(self.sep_cache_size, self.init_cache_size), layer_num) # max right boundary for separators, excluded
        self.SEP_ACCUMULATION = SEP_ACCUMULATION
        self.USE_MAX_SEP_CACHE = USE_MAX_SEP_CACHE
        self.SEP_PADDING_IN_BATCH = SEP_PADDING_IN_BATCH
        

        ### For positional encoding shifting
        self.APPLY_PE_SHIFT = APPLY_PE_SHIFT
        self.APPLY_PES_INSIDE = APPLY_PES_INSIDE

        self.cos_sin_rerotation_cache = {}
        self._cos_cache = None
        self._sin_cache = None        
        self._shifted_position_ids: List[torch.Tensor] = _shifted_position_ids if _shifted_position_ids is not None else []        
        self._rope_unsqueeze_dim = _rope_unsqueeze_dim
        self._rope_seq_dim = _rope_seq_dim        

        self.pe_dim = pe_dim
        self.max_position_embeddings = max_position_embeddings
        self.base = base
        inv_freq = 1.0 / (self.base ** (torch.arange(0, self.pe_dim, 2, dtype=torch.int64).float().to(device) / self.pe_dim))
        self.inv_freq = inv_freq
        self.pe_scaling_factor = pe_scaling_factor
        self._sin_cached = None
        self._cos_cached = None

        if model_type is None:
            assert isinstance(separator_token_ids, list), f"`separator_token_ids: List[int]` must be correctly provided for initialization unless `model_type` is properly given, which will auto-fiil `separator_token_ids`."
            assert len(separator_token_ids) > 0, f"`separator_token_ids: List[int]` should NOT be empty."
            for i in range(len(separator_token_ids)):
                assert isinstance(separator_token_ids[i], int), f"The ids in `separator_token_ids` must be of the type `int`."  
            assert isinstance(PADDING_ID, int), f"`PADDING_ID: int` must be correctly provided for initialization unless `model_type` is properly given, which will auto-fiil `PADDING_ID`."
            self.separator_token_ids = separator_token_ids
            self.PADDING_ID = PADDING_ID                               
        else:
            assert isinstance(model_type, str), f"`model_type` should be a `str` or `None`."
            if 'llama' in  model_type.lower():
                # print("Debug: For Llama's default separators")
                self.separator_token_ids = [128000, 13, 11, 30, 0, 26, 25, 198, 220, 662, 1174, 949, 758, 2652, 551, 720, 256,262] # llama3 8b
                self.PADDING_ID = 128009
            elif ( 'pythia' in model_type.lower() ) or ( 'gpt_neox' in model_type.lower() ):
                # print("Debug: For GPTNeox's default separators")
                self.separator_token_ids = [15, 13, 32, 2, 28, 27, 209, 186, 187,    964, 1157, 3736, 2195, 3706, 1163, 2490,  50276,    586, 4928, 50275 ]       # pythia 14b
                self.PADDING_ID = 0
            elif 'falcon' in model_type.lower():
                # print(f"Debug: For Falcon's default separators")
                self.separator_token_ids = [25, 23,  42, 12, 38, 37, 193,  4610,  204, 258, 1212, 23787, 466 ]       # falcon-40b
                self.PADDING_ID = 11
            else:
                raise NotImplementedError(f"NOT implemented for the tokenizer of the backbone model type: `{model_type}`. You must provide `separator_token_ids: List[int]` and `PADDING_ID: int` for initialization in this case! ")
        
        if APPLY_PE_SHIFT:
            print(">>>>>>>>---------#####################################################################################-----------<<<<<<<<")
            print(">>>>>>>>---------                                                                                     -----------<<<<<<<<")
            print(">>>>>>>>---------  Warning: When `APPLY_PE_SHIFT=True`, SepCache must store the key/value states       ----------<<<<<<<<")
            print(">>>>>>>>---------              before applying positional encoding (specifically RoPE)                -----------<<<<<<<<")
            print(">>>>>>>>---------#####################################################################################-----------<<<<<<<<")
                
        if APPLY_PES_INSIDE:
            print(">>>>>>>>---------#####################################################################################-----------<<<<<<<<")
            print(">>>>>>>>---------                                                                                     -----------<<<<<<<<")
            print(">>>>>>>>---------  Warning: When `APPLY_PES_INSIDE=True`, there is no need to apply rotary positional embedding--<<<<<<<<")
            print(">>>>>>>>---------  within the self_attention function, as this operation will be handled inside the `update`  ---<<<<<<<<")
            print(">>>>>>>>---------  function of SepCache. Note that `APPLY_PES_INSIDE=True` is typically used together with     ---<<<<<<<<")
            print(">>>>>>>>---------  `APPLY_PE_SHIFT=True`.                                                                     ---<<<<<<<<")
            print(">>>>>>>>---------#####################################################################################-----------<<<<<<<<")                            
            

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,        
        layer_idx: int,        
        input_ids: torch.Tensor = None,
        PREFILLING_FLAG: bool = True,
        query_states: Optional[torch.Tensor] = None,        
        position_ids: Optional[torch.Tensor]=None,                
        cache_kwargs: Optional[Dict[str, Any]] = None,
    ) -> Union[Tuple[torch.Tensor, torch.Tensor],Tuple[torch.Tensor, torch.Tensor, torch.Tensor]]:
        """
        Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.

        Parameters:        
            `key_states` (`torch.Tensor`):
                The new key states to cache.
            `value_states` (`torch.Tensor`):
                The new value states to cache.
            `input_ids` (`torch.Tensor`)
                The ids of the input tokens (context tokens or autoregressive tokens)                
            `layer_idx` (`int`):
                The index of the layer to cache the states for.
            `PREFILLING_FLAG` (`bool`)
                It should be `True` at pre-filling phase and `False` when decoding

            `query_states` (`Optional[torch.Tensor]`)
                The query states that need positional encoding shifting. Only useful when `self.APPLY_PE_SHIFT=True`
            `position_ids` (`Optional[torch.Tensor]`)
                The original positional ids of the tokens in the input sequence (i.e., indices of positions of each input sequence tokens in the position embeddings)
                Only useful when `self.APPLY_PE_SHIFT=True`, i.e., SepCache will utilize `position_ids` to calculate positional shifting.
            `cache_kwargs` (`Dict[str, Any]`, optional):
                Additional arguments for the cache update. The following arguments can be used in `SepCache`: `sin`,
                `cos`, `sin_q`, `cos_q`, `shifted_pos_ids` and `partial_rotation_size`. These arguments are used with models using RoPE, to recompute the
                rotation as the tokens are shifted. (These are only useful when `self.APPLY_PE_SHIFT=True`)

                Only useful when `self.APPLY_PE_SHIFT=True` and `self.APPLY_PES_INSIDE=False`:
                    `cos` and `sin` are the shifted rotation matrices for key states
                    `cos_q` and `sin_q` are the shifted rotation matrices for query states
                    `shifted_pos_ids` is the shifted positional ids for key states
                    
                When `self.APPLY_PE_SHIFT=True` and `self.APPLY_PES_INSIDE=True`:
                    SepCache will utilize `position_ids` to calculate positional shifting.
                
                `partial_rotation_size` means that `partial_rotation_size` slices along certain dimension need to be shifted (i.e., [0, 1, ..., `partial_rotation_size-1`] slices along certain dimension)

        Return:
            A tuple containing the updated key, value, and query states (query states are optional: only applicable when `self.APPLY_PE_SHIFT=True`).

        For detailed usage instructions, please refer to https://github.com/HKUDS/SepLLM
        """

        APPLY_PE_SHIFT = self.APPLY_PE_SHIFT
        APPLY_PES_INSIDE = self.APPLY_PES_INSIDE
        SEP_ACCUMULATION = self.SEP_ACCUMULATION
        USE_MAX_SEP_CACHE = self.USE_MAX_SEP_CACHE
        SEP_PADDING_IN_BATCH = self.SEP_PADDING_IN_BATCH
        
        if input_ids is None:
            input_ids = cache_kwargs.get("input_ids", None)
        assert input_ids is not None, f"`input_ids` must be properly provided when calling `update()` in `SepCache`."

        assert (self.APPLY_PE_SHIFT and (query_states is not None)) or not APPLY_PE_SHIFT, f"If `APPLY_PE_SHIFT=True`, `query_states` should be provided and it will be updated and returned"
                
        # Update the number of seen tokens
        if layer_idx == 0:
            assert key_states.shape[-2] == input_ids.shape[-1], f"`key_states.shape[-2]` ({key_states.shape[-2]}) should be equal to `input_ids.shape[-1]` ({input_ids.shape[-1]})."
            self._seen_tokens += input_ids.shape[-1]

        # [bsz, num_heads, seq_len, head_dim]
        new_kv_pair = (key_states, value_states)
                
        if (key_states.shape[self.k_seq_dim] + self.get_usable_length(layer_idx) < self.cache_size[layer_idx]) or PREFILLING_FLAG:  ## For prefilling
            assert  (PREFILLING_FLAG and key_states.shape[self.k_seq_dim] >= 1)  or (not PREFILLING_FLAG and key_states.shape[self.k_seq_dim] == 1)

            # Update cache and past token ids                
            self.update_kv_cache_and_past_tok_ids(new_kv_pair, input_ids, layer_idx, COMPRESS_KV=False, SEP_ACCUMULATION=SEP_ACCUMULATION, USE_MAX_SEP_CACHE=USE_MAX_SEP_CACHE, SEP_PADDING_IN_BATCH=SEP_PADDING_IN_BATCH)
            
            if APPLY_PE_SHIFT:                     
                shifted_keys, shifted_queries = self.apply_shifted_pos_emb(layer_idx, APPLY_PES_INSIDE, PREFILLING_FLAG, key_states, query_states, position_ids, cache_kwargs ) 
                query_states  = shifted_queries
                self.set_kv_cache( (shifted_keys, self.value_cache[layer_idx]), layer_idx)
            
            if PREFILLING_FLAG and layer_idx == 0:
                self.left_padding_offset = self.get_initial_pos_offset(layer_idx)

            ## Count KV usage
            kv_len_ori = self.get_seq_length(layer_idx)
            kv_len_cmp = self.get_usable_length(layer_idx)
            self._update_kv_ratio(kv_len_cmp=kv_len_cmp, kv_len_ori=kv_len_ori, layer_idx=layer_idx)

        else:
            ## Update the KV cache, count KV usage, and compress the KV cache if necessary                        
            kv_len_ori = self.get_seq_length(layer_idx)
            offset_init_size_layer = self.update_kv_cache_and_past_tok_ids(new_kv_pair, input_ids, layer_idx, COMPRESS_KV=True, SEP_ACCUMULATION=SEP_ACCUMULATION, USE_MAX_SEP_CACHE=USE_MAX_SEP_CACHE, SEP_PADDING_IN_BATCH=SEP_PADDING_IN_BATCH)
            kv_len_cmp = self.get_usable_length(layer_idx)
            self._update_kv_ratio(kv_len_cmp=kv_len_cmp, kv_len_ori=kv_len_ori, layer_idx=layer_idx)
                        
            if APPLY_PE_SHIFT:                
                shifted_keys, shifted_queries = self.apply_shifted_pos_emb(layer_idx, APPLY_PES_INSIDE, PREFILLING_FLAG, key_states, query_states, position_ids, cache_kwargs )                 
                query_states  = shifted_queries
                self.set_kv_cache( (shifted_keys, self.value_cache[layer_idx]), layer_idx)
            
        if self.PRINT_KV_RATIO_INSIDE:    
            self._print_kv_ratio(layer_idx)

        if query_states is not None:
            return self.key_cache[layer_idx], self.value_cache[layer_idx], query_states
        else:
            return self.key_cache[layer_idx], self.value_cache[layer_idx]
            
    
    def update_kv_cache_and_past_tok_ids(self, new_kv_pair: Tuple[torch.Tensor], input_ids: torch.Tensor, layer_idx: int, COMPRESS_KV=False, SEP_ACCUMULATION:bool=True, USE_MAX_SEP_CACHE:bool=False, SEP_PADDING_IN_BATCH:bool=True) -> None:
        """Update the KV cache and past token ids; compress the KV cache if necessary."""
        assert layer_idx is not None, f"`layer_idx` must be given"
        assert len(new_kv_pair) == 2, f"The length of `new_kv_pair` must be 2."
        assert len(self.key_cache) == len(self.value_cache), f"The layer numbers of stored `self.key_cache` and `self.value_cache` must be the same."

        self.append_past_tok_ids(input_ids, layer_idx)

        key, value = new_kv_pair
                
        if len(self.key_cache) <= layer_idx:
            self.key_cache.append(key)                        
            self.value_cache.append(value)
            assert len(self.key_cache) - 1  == layer_idx, f"The key_cache should be updated sequentially according to the layer numbering."              
            assert len(self.value_cache) - 1  == layer_idx, f"The value_cache should be updated sequentially according to the layer numbering."      
        else:            
            self.key_cache[layer_idx] = torch.cat([self.key_cache[layer_idx] , key], dim=self.k_seq_dim)
            self.value_cache[layer_idx] = torch.cat([self.value_cache[layer_idx] , value], dim=self.v_seq_dim)

        assert len(self.key_cache) == len(self.value_cache), f"The layer numbers of stored key_cache and value_cache must be the same."
        assert self.key_cache[layer_idx].shape[self.k_seq_dim] == self.value_cache[layer_idx].shape[self.v_seq_dim], "The seq length for key_cache and value_cache must be the same."

        if COMPRESS_KV:
            cmp_past_kv_pairs, cmp_past_tok_ids, offset_init_size_layer = self.compress_kv_cache_and_tokids_layer_wise((self.key_cache[layer_idx], self.value_cache[layer_idx]), layer_idx ,SEP_ACCUMULATION=SEP_ACCUMULATION, USE_MAX_SEP_CACHE=USE_MAX_SEP_CACHE, SEP_PADDING_IN_BATCH=SEP_PADDING_IN_BATCH )
            self.set_kv_cache(cmp_past_kv_pairs, layer_idx)
            self.set_past_tok_ids(cmp_past_tok_ids, layer_idx)            
            return offset_init_size_layer
        

    def append_past_tok_ids(self, input_ids: torch.Tensor, layer_idx: int) -> None:
        """Naively append the new `input_ids` to `self.past_tok_ids[layer_idx]`"""    
        assert layer_idx is not None, f"`layer_idx` must be given"
        
        if len(self.past_tok_ids) <= layer_idx:                        
            self.past_tok_ids.append(input_ids)
            assert len(self.past_tok_ids) - 1  == layer_idx, f"The past_tok_ids should be updated sequentially according to the layer numbering."                        
        else:      
            self.past_tok_ids[layer_idx] = torch.cat([self.past_tok_ids[layer_idx] , input_ids], dim=-1)


    def compress_kv_cache_and_tokids_layer_wise(self, past_kv_pairs, layer_idx:int ,SEP_ACCUMULATION=False, USE_MAX_SEP_CACHE=False, SEP_PADDING_IN_BATCH=True ):
        """        
        `SEP_ACCUMULATION`: If True, it means we will try to accumulate all the KVs for seperators. If False, only the `new_sep_kv` compressed from the `past_win_kv` will be kept (see function `compress_kv_cache_and_tokids_layer_wise`).
                                                             
        `USE_MAX_SEP_CACHE`: If True, it means we only keep at most `self.sep_cache_size` seperators' KVs.  If the number exceeds this limit, older separator's KVs will be discarded, keeping only the most recent `self.sep_cache_size` KVs. In the paper, the hyperparameter `s` is an abbreviated alias for `self.sep_cache_size`.

        `SEP_PADDING_IN_BATCH`: If True, it means that SepCache will pad separator tokens in other records to be aligned with the record with the most separators in a batch. If False, it means that SepCache will truncate older separator tokens in other records to be aligned with the record with the fewest separators in a batch.
        
        Note: If `SEP_ACCUMULATION=True` and `USE_MAX_SEP_CACHE=False`, as the number of input tokens increases, the number of separators in the KV cache will also accumulate endlessly 
              and `self.cache_size` will also be infinitely expanded (no longer fixed).

              When `SEP_PADDING_IN_BATCH=True` is used in combination with `USE_MAX_SEP_CACHE=False` and `SEP_ACCUMULATION=True`, the KV cache will accumulate indefinitely, 
              and since `SEP_PADDING_IN_BATCH=True`, the KVs of all separators will be retained (rather than being truncated).


        For detailed usage instructions, please refer to https://github.com/HKUDS/SepLLM
        """    

        key, value = past_kv_pairs
        seq_len = key.size(self.k_seq_dim)
        assert seq_len == self.get_usable_length(layer_idx), f"The seq_len of cached past key and value states should be the same as the return of `get_usable_length()`, which is {self.get_usable_length(layer_idx)}"

        
        left_padding_offset =  self.left_padding_offset        
        assert left_padding_offset is not None
        offset_init_size_layer = self.init_cache_size[layer_idx] + left_padding_offset
        self._set_layer_wise_attribute("max_sep_exidx", self._list_element_add(self.sep_cache_size, self.init_cache_size, bias=left_padding_offset), self.layer_num)
        self._CHECK_PARAMS_VALIDITY(layer_idx, left_padding_offset)

        if self.sep_exrange[layer_idx] <=0:            
            self.sep_exrange[layer_idx] = offset_init_size_layer

        assert seq_len - self.local_size[layer_idx] > self.sep_exrange[layer_idx]
        
        if offset_init_size_layer > 0:                                                       
            initial_kv, initial_tokids =  self.slice_kv_cache_and_tokids( past_kv_pairs, self.past_tok_ids[layer_idx], 0, offset_init_size_layer, seq_len=seq_len, _CHECK_IDX=True )        

        Before_First_Time_Compress_Flag = (self.sep_exrange[layer_idx] == offset_init_size_layer)  ## If true, it means the present timestamp is before t1: the 1st time to compress the past window, in which only seperators' kv are kept.
        
        if SEP_ACCUMULATION and not Before_First_Time_Compress_Flag: ## To get the old sep kv and sep token ids.           
            past_sep_kv, past_sep_tokids =  self.slice_kv_cache_and_tokids( past_kv_pairs, self.past_tok_ids[layer_idx], offset_init_size_layer, self.sep_exrange[layer_idx], seq_len=seq_len, _CHECK_IDX=True )            
        
        past_win_kv, past_win_tokids =  self.slice_kv_cache_and_tokids( past_kv_pairs, self.past_tok_ids[layer_idx], self.sep_exrange[layer_idx], seq_len - self.local_size[layer_idx], seq_len=seq_len, _CHECK_IDX=True )        
        
        
        local_kv, local_tokids  =  self.slice_kv_cache_and_tokids( past_kv_pairs, self.past_tok_ids[layer_idx], seq_len - self.local_size[layer_idx], seq_len, seq_len=seq_len, _CHECK_IDX=True )
        
        new_sep_kv, new_sep_tokids, min_sep_num, max_sep_num = self.compress_past_win_2_seps( past_win_kv, past_win_tokids, SEP_PADDING_IN_BATCH = SEP_PADDING_IN_BATCH ) ## To get the new sep kv and sep token ids that were just compressed from the past window
        
        if SEP_ACCUMULATION and not Before_First_Time_Compress_Flag:  ## Try to accumulate all the seen seps           
            sep_kv, sep_tokids  = self.cat_kv_cache_and_tokids( [ past_sep_kv, new_sep_kv ] ,  [past_sep_tokids, new_sep_tokids ] )                
            new_sep_len = new_sep_tokids.shape[-1]
            sep_len = sep_tokids.shape[-1]  
        else: ## Only keep the newly obtained kv (those just compressed from the past window)
            sep_kv, sep_tokids = new_sep_kv, new_sep_tokids
            # new_sep_len = new_sep_tokids.shape[-1]
            sep_len = sep_tokids.shape[-1]            
            assert (SEP_PADDING_IN_BATCH and max_sep_num==sep_len) or ( (not SEP_PADDING_IN_BATCH) and min_sep_num==sep_len)


        if USE_MAX_SEP_CACHE: ## Fixed sep cache size, i.e., only keep max_sep_len seps' kv in the cache. 
            if offset_init_size_layer + sep_len > self.max_sep_exidx[layer_idx]:
                max_sep_len = self.max_sep_exidx[layer_idx] - offset_init_size_layer
                assert sep_kv[0].shape[-2] == sep_tokids.shape[-1], f"The seq_len for seps' KVs and tok_ids should be the same."

                sep_kv, sep_tokids =  self.slice_kv_cache_and_tokids( sep_kv, sep_tokids, sep_len-max_sep_len, sep_len, seq_len = sep_tokids.shape[-1] ,_CHECK_IDX=True )
                self.sep_exrange[layer_idx] =  self.max_sep_exidx[layer_idx]  
            else:
                self.sep_exrange[layer_idx] =  offset_init_size_layer + sep_len             

        else:    ## Extend the sep cache and the whole cache if USE_MAX_SEP_CACHE is not set                           
            self.sep_exrange[layer_idx] =  offset_init_size_layer + sep_len
            if self.sep_exrange[layer_idx] > self.max_sep_exidx[layer_idx]:                    
                cache_incremental_gap = self.sep_exrange[layer_idx] - self.max_sep_exidx[layer_idx]
                self.max_sep_exidx[layer_idx] = self.sep_exrange[layer_idx] 
                self.sep_cache_size[layer_idx] = self.sep_cache_size[layer_idx] + cache_incremental_gap
                self.cache_size[layer_idx] = self.cache_size[layer_idx] + cache_incremental_gap

        if offset_init_size_layer > 0:                                
            cmp_past_kv_pairs, cmp_past_tok_ids  = self.cat_kv_cache_and_tokids( [initial_kv, sep_kv, local_kv ] ,  [initial_tokids, sep_tokids, local_tokids  ] )
        else:
            cmp_past_kv_pairs, cmp_past_tok_ids  = self.cat_kv_cache_and_tokids( [sep_kv, local_kv ] ,  [sep_tokids, local_tokids  ] )
                
        return cmp_past_kv_pairs, cmp_past_tok_ids, offset_init_size_layer
            

    def compress_past_win_2_seps(self, past_win_kv: Tuple[torch.Tensor], past_win_tokids: torch.Tensor, MIN_SEP_ALERT: bool=False, SEP_PADDING_IN_BATCH: bool=True ) -> Tuple[Union[Tuple[torch.Tensor], torch.Tensor, int ]]:
        """Compress the KVs in the past window into the sep cache where only separators' KVs are kept. Padding or Truncating if necessary."""
        sep_index_tensor = torch.zeros_like(past_win_tokids).bool()  # batch x seq_len

        for sp_id in self.separator_token_ids:            
            sep_index_tensor = sep_index_tensor | ( past_win_tokids == sp_id ) # batch x seq_len

        sep_cnt = sep_index_tensor.int().sum(-1)
        min_sep_num = sep_cnt.min()  # the min sep number for the seqs in a batch
        max_sep_num = sep_cnt.max()  # the max sep number for the seqs in a batch

        
        if MIN_SEP_ALERT and not SEP_PADDING_IN_BATCH:
            assert min_sep_num>0, f"The min sep number for each compressing time in a batch should be at least one if `MIN_SEP_ALERT=True` and `SEP_PADDING_IN_BATCH=False`"
                
        batch1_sep_ids_list = []
        batch_size = past_win_tokids.shape[0]
        for b_id in range(batch_size):            
            batch1_sep_ids = past_win_tokids[b_id, sep_index_tensor[b_id]] # #  sep_num
            if SEP_PADDING_IN_BATCH: ## padding
                sep_num = batch1_sep_ids.shape[-1]
                padding_num =  max_sep_num - sep_num                       
                if padding_num > 0:
                    assert padding_num <= past_win_tokids.shape[-1], f"padding_num: {padding_num} should be <= past_win_tokids.shape[-1]:{past_win_tokids.shape[-1]}"
                    batch1_sep_ids = batch1_sep_ids  # #  sep_num
                    batch1_pad_ids = past_win_tokids[b_id, -padding_num:]  # #  padding_num
                    batch1_sep_ids =  torch.cat([batch1_sep_ids, batch1_pad_ids], dim =-1)   ##  max_sep_num                
            else: ## truncating
                batch1_sep_ids = batch1_sep_ids[..., :min_sep_num ]  # #  min_sep_num
            batch1_sep_ids_list.append(batch1_sep_ids)                                                           
            
        new_sep_tokids = torch.stack(batch1_sep_ids_list, dim=0) # #  B x min_sep_num
        key_cache, value_cache = past_win_kv

        assert batch_size==key_cache.shape[0]
        batch1_sep_k_list = []
        batch1_sep_v_list = []
        batch1_sep_ids_list = []
        for b_id in range(batch_size):
            batch1_sep_k = self.k_bat_dim_select(key_cache, b_id, sep_index_tensor[b_id], min_sep_num, max_sep_num, SEP_PADDING_IN_BATCH)
            batch1_sep_k_list.append(batch1_sep_k)

            batch1_sep_v = self.v_bat_dim_select(value_cache, b_id, sep_index_tensor[b_id], min_sep_num, max_sep_num, SEP_PADDING_IN_BATCH)
            batch1_sep_v_list.append( batch1_sep_v )   
        
        sep_k = torch.stack(batch1_sep_k_list, dim=0)  ## batch x head x min_sep_num x dim
        sep_v = torch.stack(batch1_sep_v_list, dim=0)  ## batch x head x min_sep_num x dim                   
        new_sep_kv = (sep_k, sep_v)

        return new_sep_kv, new_sep_tokids, min_sep_num, max_sep_num      


    def apply_shifted_pos_emb(self, layer_idx: int, APPLY_PES_INSIDE: bool, PREFILLING_FLAG: bool, key_states: torch.Tensor, query_states: torch.Tensor, position_ids: torch.Tensor, cache_kwargs: Optional[Dict[str, Any]] = None ) -> torch.Tensor:        
        """Perform positional encoding shifting if required"""
        seq_len = self.get_usable_length(layer_idx)
        keys_to_shift = self.key_cache[layer_idx]
        queries_to_shift = query_states
        assert keys_to_shift.shape[self.k_seq_dim] == seq_len
        
        if cache_kwargs is None:
            cache_kwargs = {}

        if APPLY_PES_INSIDE:           
            if len(self._shifted_position_ids) <= layer_idx:
                self._shifted_position_ids.append(None)

            if PREFILLING_FLAG: ## for prefilling
                assert position_ids.shape[-1] >= seq_len, f"The length of position_ids should be >= the usable length of kv cache when prefilling."                
                self._shifted_position_ids[layer_idx] = position_ids[:, :seq_len].detach()
                shifted_pos_ids = self._shifted_position_ids[layer_idx]

            elif self._shifted_position_ids[layer_idx].shape[-1] >= seq_len:  ## for generation
                assert position_ids.shape[-1] == 1, f"The length of query and position_ids should be 1 during generation."
                shifted_pos_ids = self._shifted_position_ids[layer_idx][:, :seq_len].detach()

            elif self._shifted_position_ids[layer_idx].shape[-1] < seq_len:   ## for generation
                assert position_ids.shape[-1] == 1, f"The length of query and position_ids should be 1 during generation."
                increased_gap = seq_len - self._shifted_position_ids[layer_idx].shape[-1]
                assert increased_gap < self._shifted_position_ids[layer_idx].shape[-1], f"Normally, for auto-regressive model, the input length for each step should be 1 during generation."

                new_position_ids = self._shifted_position_ids[layer_idx][:, -increased_gap: ] + increased_gap
                self._shifted_position_ids[layer_idx] = torch.cat([self._shifted_position_ids[layer_idx], new_position_ids.detach()], dim=-1)
                shifted_pos_ids = self._shifted_position_ids[layer_idx]
            else:
                raise RuntimeError

            cos, sin = self._get_naive_shifted_cos_sin(
                key_states, shifted_pos_ids, seq_len
            )

            q_rope_idx = torch.arange( seq_len - query_states.shape[self.k_seq_dim],  seq_len).to(cos.device)
            cos_q, sin_q = cos.index_select(self._rope_seq_dim, q_rope_idx), sin.index_select(self._rope_seq_dim, q_rope_idx)

        else:
            sin = cache_kwargs.get("sin")
            cos = cache_kwargs.get("cos")                         
            sin_q = cache_kwargs.get("sin_q")
            cos_q = cache_kwargs.get("cos_q")    
            shifted_pos_ids = cache_kwargs.get("shifted_pos_ids") 
            assert (sin is not None) and (cos is not None), f"sin and cos matrices should be be provided"
            if sin_q is None:
                q_rope_idx = torch.arange( seq_len - query_states.shape[self.k_seq_dim],  seq_len).to(sin.device)
                sin_q = sin.index_select(self._rope_seq_dim, q_rope_idx)
            if cos_q is None:
                q_rope_idx = torch.arange( seq_len - query_states.shape[self.k_seq_dim],  seq_len).to(cos.device)
                cos_q = cos.index_select(self._rope_seq_dim, q_rope_idx)
            
        partial_rotation_size = cache_kwargs.get("partial_rotation_size")
        
        # On RoPE models, we need to recompute the Key rotation as the tokens are shifted
        if partial_rotation_size is not None:
            keys_to_shift, keys_pass = (
                keys_to_shift[..., :partial_rotation_size],
                keys_to_shift[..., partial_rotation_size:]
            )
            queries_to_shift, queries_pass = (
                queries_to_shift[..., :partial_rotation_size],
                queries_to_shift[..., partial_rotation_size:]
            )
                                    
        shifted_keys = self._apply_rotary_pos_emb_single(keys_to_shift, cos, sin, shifted_pos_ids, unsqueeze_dim=self._rope_unsqueeze_dim)
        shifted_queries = self._apply_rotary_pos_emb_single(queries_to_shift, cos_q, sin_q, shifted_pos_ids[:,  -queries_to_shift.shape[self.k_seq_dim] : ], unsqueeze_dim=self._rope_unsqueeze_dim)

        if partial_rotation_size is not None:
            shifted_keys = torch.cat( [shifted_keys, keys_pass], dim=-1)
            shifted_queries = torch.cat( [shifted_queries, queries_pass], dim=-1)


        return shifted_keys, shifted_queries


    def get_seq_length(self, layer_idx: Optional[int] = 0) -> int:
        """Returns the sequence length of the seen tokens. A layer index can be optionally passed."""                
        return self._seen_tokens


    def get_usable_length(self, layer_idx: int = 0) -> int:
        """Returns the sequence length of the actual cached states. A layer index must be passed."""                         
        if len(self.key_cache) <= layer_idx :
            return 0
        assert self.key_cache[layer_idx].shape[self.k_seq_dim] == self.value_cache[layer_idx].shape[self.v_seq_dim], f"`self.key_cache` and `self.value_cache` should have the same length."        
        return self.key_cache[layer_idx].shape[self.k_seq_dim]

    def get_initial_pos_offset(self, layer_idx:int = 0) -> int:      
        """Return the number of padding tokens in the record with the most left padding tokens in a batch."""
        assert isinstance(self.PADDING_ID, int), f"`self.PADDING_ID` should be correctly set."
        assert len(self.past_tok_ids) > layer_idx, f"`self.past_tok_ids` for layer {layer_idx} must have been properly set."
                
        past_tok_ids = self.past_tok_ids[layer_idx]
        assert past_tok_ids is not None, f"`past_tok_ids` for layer {layer_idx} should not be None"

        pad_index_tensor = (past_tok_ids == self.PADDING_ID)  ## batch x seq_len
        pad_toks_cnt = pad_index_tensor.int().sum(-1)  ## [batch]
        offset = pad_toks_cnt.max().item()

        return offset

                             
    def get_batch_size(self) -> int:
        """Return the batch size."""
        assert self.key_cache is not None, f"`self.key_cache` should not be None."
        assert self.value_cache is not None, f"`self.value_cache` should not be None."
        assert len(self.key_cache) > 0, f"`self.key_cache` is empty. No batch size is available."
        assert len(self.value_cache) > 0, f"self.value_cache is empty. No batch size is available."

        assert len(self.value_cache) == len(self.key_cache), f"self.value_cache and self.key_cache should be at the same length."
        assert self.value_cache[0].shape[0] == self.key_cache[0].shape[0], f"self.value_cache and self.key_cache should have the same batch size."

        return self.value_cache[0].shape[0]

    def get_kv_pair(self, layer_idx: int = None) -> Tuple[torch.Tensor]:
        assert layer_idx is not None, f"`layer_idx` must be given."

        if (len(self.key_cache) <= layer_idx) and (len(self.value_cache) <= layer_idx ):
            key = self.key_cache[layer_idx]
            value = self.value_cache[layer_idx]
        else:
            raise RuntimeError(f"The KV for layer:{layer_idx} have not been set.")
        return (key, value)


    def set_kv_cache(self, kv_pair: Tuple , layer_idx: int ) -> None:
        assert len(kv_pair) == 2, f"The length of `kv_pair` must be 2."
        self.key_cache[layer_idx] = kv_pair[0]
        self.value_cache[layer_idx] = kv_pair[1]
    
    def set_past_tok_ids(self, tok_ids: torch.Tensor, layer_idx:int) -> None:
        self.past_tok_ids[layer_idx] = tok_ids


    def cat_kv_cache_and_tokids(self, kv_pairs_list: List[Tuple[torch.Tensor]] , tok_ids_list:List[torch.Tensor]) -> Tuple[Union[Tuple[torch.Tensor],torch.Tensor]]:
        
        return self.cat_kv_cache(kv_pairs_list), self.cat_token_ids(tok_ids_list)


    def slice_kv_cache_and_tokids(self, kv_pair:Tuple[torch.Tensor], tok_ids_list:torch.Tensor, start:int, end:int, seq_len:int=None, _CHECK_IDX:bool=True, ) -> Tuple[Union[Tuple[torch.Tensor], torch.Tensor]]:
                             
        sliced_kv = self._slice_kv(start, end,  kv_pair=kv_pair, seq_len=seq_len, _CHECK_IDX=_CHECK_IDX,)                                    
        sliced_tids = self._slice_tok_ids(start, end, tok_ids_list = tok_ids_list, seq_len=seq_len, _CHECK_IDX=_CHECK_IDX)
        
        return sliced_kv , sliced_tids


    def cat_kv_cache(self, kv_pairs_list: List[Tuple[torch.Tensor]] ) -> Tuple[torch.Tensor]:               
        assert len(kv_pairs_list) >= 1 
        
        if len(kv_pairs_list) == 1 :
            return kv_pairs_list[0]
        else:
            ret = None 
            for i, kv_pair in enumerate(kv_pairs_list): # enumerate all the KVs needed to be cat
                if i == 0:
                    ret = kv_pair
                else:
                    ret = self._cat_kv(ret, kv_pair)
            return ret


    def cat_token_ids(self, tok_ids_list:List[torch.Tensor]  ) -> torch.Tensor :
        assert len(tok_ids_list) >= 1 
        
        return torch.cat(tok_ids_list, dim=-1)     


    def _cat_kv(self, kv_pair_a:Tuple[torch.Tensor],  kv_pair_b:Tuple[torch.Tensor]) -> Tuple[torch.Tensor]:            
        k_a, v_a = kv_pair_a
        k_b, v_b = kv_pair_b
        
        cat_k = torch.cat([k_a, k_b], dim=self.k_seq_dim)
        cat_v = torch.cat([v_a, v_b], dim=self.v_seq_dim)
        return (cat_k, cat_v)


    def _slice_kv(self, start:int, end:int, kv_pair: Tuple[torch.Tensor],   seq_len:int=None, _CHECK_IDX:bool=True)  -> Tuple[torch.Tensor] :
        assert kv_pair is not None, f"kv_pair must NOT be None when slicing it."
        key_cache = kv_pair[0]
        value_cache = kv_pair[1]

        if _CHECK_IDX:                                 
            assert seq_len is not None, f"seq_len must be given for checking the index for slicing"
            start, end = self._CHECK_IDX(start, end, seq_len)   
            
        sliced_key_cache = self.k_slice(key_cache, start, end) 
        sliced_value_cache = self.v_slice(value_cache, start, end)

        return ( sliced_key_cache, sliced_value_cache)


    def _slice_tok_ids(self, start:int, end:int, tok_ids_list:torch.Tensor , seq_len:int=None, _CHECK_IDX:bool=False) -> torch.Tensor:
        assert tok_ids_list is not None, f"tok_ids_list must NOT be None when slicing it."
        
        if _CHECK_IDX:
            assert seq_len is not None, f"seq_len must be given for checking the index for slicing"
            start, end = self._CHECK_IDX(start, end, seq_len)        
          
        sliced_tok_ids = tok_ids_list[:, start:end]
        return sliced_tok_ids

    def _set_layer_wise_attribute(self, name: str, value: Any, layer_num:int ):
        """Set layer-wise attributes"""
        if isinstance(value, int):        
            setattr(self, name, [value] * layer_num)
        elif isinstance(value, (list, tuple)):
            assert len(value) == layer_num, f"The length of {name}: {len(value)} must be equal to `layer_num`: {layer_num}"
            setattr(self, name, list(value))
        else:
            raise TypeError(f"{name} must be of the type `int` or `list` but got `{type(value)}`")

    def _list_element_add(self, list_a: List, list_b: List, bias: int=0, dtype = int, device = 'cpu') -> List:  
        """Element-wise addition between two lists."""      
        assert len(list_a) == len(list_b), f"The length of `list_a` ({len(list_a)}) must be equal to that of `list_b` ({len(list_b)})."
        tensor_c = torch.tensor(list_a, dtype=dtype, device=device) + torch.tensor(list_b, dtype=dtype, device=device) + torch.tensor([bias], dtype=dtype, device=device)
        return tensor_c.int().tolist()
        
    def _CHECK_IDX(self, start: int = 0, end: int = 100, seq_len: int = 1000):
        assert isinstance(start, int) and isinstance(end, int) and isinstance(seq_len, int), f"`start`, `end`, `seq_len` must be `int`."
        assert seq_len>0 , f"`seq_len` must > 0"
        
        if start <0 :
            start = start % seq_len
        if end < 0 :
            end = end % seq_len
        assert (start >=0) and (start < seq_len) , f"start:{start}, end:{end}, seq_len:{seq_len}"
        assert (end >= 0) and (end <= seq_len) , f"start:{start}, end:{end}, seq_len:{seq_len}"
        assert  start < end, f"start:{start}, end:{end}, seq_len:{seq_len}"

        return start,end

    def _CHECK_PARAMS_VALIDITY(self, layer_idx:int, left_padding_offset:int):
        assert len(self.cache_size) > layer_idx
        assert len(self.init_cache_size) > layer_idx
        assert len(self.sep_cache_size) > layer_idx
        assert len(self.max_sep_exidx) > layer_idx
        assert len(self.local_size) > layer_idx

        assert self.cache_size[layer_idx] > 0 , f"`self.cache_size` for layer:{layer_idx} must be greater than 0"
        assert self.init_cache_size[layer_idx] >= 0 , f"`self.init_cache_size` for layer:{layer_idx} must be greater than (equal to) 0"
        assert self.local_size[layer_idx] > 0 , f"`self.local_size` for layer:{layer_idx} must be greater than 0"
                    
        assert self.sep_cache_size[layer_idx] > 0 , f"`self.sep_cache_size` for layer:{layer_idx} must be greater than 0"
        assert self.max_sep_exidx[layer_idx] > 0 , f"`self.max_sep_exidx` for layer:{layer_idx} must be greater than 0"
        assert self.init_cache_size[layer_idx] + self.sep_cache_size[layer_idx] + self.local_size[layer_idx] + left_padding_offset < self.cache_size[layer_idx], f"`init_cache_size` ({self.init_cache_size[layer_idx]}) + `sep_cache_size` ({self.sep_cache_size[layer_idx]}) + `local_size` ({self.local_size[layer_idx]}) + `left_padding_offset` ({left_padding_offset}) for layer {layer_idx} should be less than `cache_size`:({self.cache_size[layer_idx]}) for layer {layer_idx}, i.e., a + s + w + (left_padding_offset) < c. Please increase `cache_size` if applicable."
        


    def _rotate_half(self, x):
        """Rotates half the hidden dims of the input."""
        x1 = x[..., : x.shape[-1] // 2]
        x2 = x[..., x.shape[-1] // 2 :]
        return torch.cat((-x2, x1), dim=-1)

    def _apply_rotary_pos_emb_single(self, k, cos, sin, position_ids=None, unsqueeze_dim=1):
        """Applies Rotary Position Embedding to the query and key tensors.

        Args:
            q (`torch.Tensor`): The query tensor.
            k (`torch.Tensor`): The key tensor.
            cos (`torch.Tensor`): The cosine part of the rotary embedding.
            sin (`torch.Tensor`): The sine part of the rotary embedding.
            position_ids (`torch.Tensor`, *optional*):
                Deprecated and unused.
            unsqueeze_dim (`int`, *optional*, defaults to 1):
                The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
                sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
                that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
                k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
                cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
                the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
        Returns:
            `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
        """        
        cos = cos.unsqueeze(unsqueeze_dim)   # batch x seq_len x dim  --> batch x 1 x seq_len x dim
        sin = sin.unsqueeze(unsqueeze_dim)        
        k_embed = (k * cos) + (self._rotate_half(k) * sin)
        return  k_embed


    def _get_naive_shifted_cos_sin(self, x: torch.Tensor, position_ids: torch.Tensor=None, seq_len=None):
        # x: [batch, num_attention_heads, seq_len, head_size]
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()
        freqs = (inv_freq_expanded @ position_ids_expanded).transpose(1, 2)
        emb = torch.cat((freqs, freqs), dim=-1)
        cos = emb.cos().to(dtype=x.dtype)
        sin = emb.sin().to(dtype=x.dtype)
        # backwards compatibility
        self._cos_cached = cos
        self._sin_cached = sin
        return cos, sin
    

    def _get_scaled_shifted_cos_sin(self, x, position_ids, seq_len=None):
        # difference to the original RoPE: a scaling factor is aplied to the position ids
        position_ids = position_ids.float() / self.scaling_factor
        cos, sin = self._get_naive_shifted_cos_sin(x, position_ids, seq_len)
        return cos, sin


    def _get_dynamicNTK_scaling_shifted_cos_sin(self, x, position_ids, seq_len=None):
        # difference to the original RoPE: inv_freq is recomputed when the sequence length > original length
        seq_len = torch.max(position_ids) + 1
        if seq_len > self.max_position_embeddings:
            base = self.base * (
                (self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1)
            ) ** (self.dim / (self.dim - 2))
            inv_freq = 1.0 / (
                base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(x.device) / self.dim)
            )
            self.register_buffer("inv_freq", inv_freq, persistent=False)  # TODO: this may break with compilation

        cos, sin = self._get_naive_shifted_cos_sin(x, position_ids, seq_len)
        return cos, sin


    def _update_kv_ratio(self, kv_len_cmp:int, kv_len_ori:int, layer_idx: int=0) -> None:
        """Update the KV ratios which are for statistics and debugging."""
        if len(self._kept_kv_ratio) <= layer_idx:
            self._kept_kv_ratio.append( (kv_len_cmp,  kv_len_ori ) )    
        else:
            old_kv_len_cmp = self._kept_kv_ratio[layer_idx][0]
            old_kv_len_ori = self._kept_kv_ratio[layer_idx][1]
            self._kept_kv_ratio[layer_idx] = (old_kv_len_cmp + kv_len_cmp,  old_kv_len_ori + kv_len_ori )
            
    def _print_kv_ratio(self, layer_idx : int, LAYER_WISE: bool = False):
        """Print the KV ratios."""
        self._print_kv_ratio_count += 1 
        if LAYER_WISE:
            if self._print_kv_ratio_count % self.print_KV_inside_per_steps == 0:      
                print(f"######################## [Kept Tokens, Seen Tokens] : {self._kept_kv_ratio[layer_idx]}, Ratio: { (self._kept_kv_ratio[layer_idx][0]+1e-6) / (self._kept_kv_ratio[layer_idx][1]+1e-6) :.4f} ########################")    

        elif self._print_kv_ratio_count % (self.print_KV_inside_per_steps * self.layer_num) == 0:                
            print(f"######################## [Kept Tokens, Seen Tokens] : {self._kept_kv_ratio[layer_idx]}, Ratio: { (self._kept_kv_ratio[layer_idx][0]+1e-6) / (self._kept_kv_ratio[layer_idx][1]+1e-6) :.4f} ########################")    


    @classmethod ## Deprecated
    def from_legacy_cache(cls, 
                past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,

                ## For SepLLM                                
                init_cache_size: Union[int, List] = 4,        
                sep_cache_size: Union[int, List] = 64,
                local_size: Union[int, List]=256, 
                cache_size: Union[int, List]=512,    
                SEP_ACCUMULATION: bool = True,
                USE_MAX_SEP_CACHE: bool = False,
                SEP_PADDING_IN_BATCH: bool = False,
                separator_token_ids: List[int] = None, ## required for initialization if `model_type` is not provided. set it to `[-1]` to degrade SepCache to StreamingLLM's SinkCache
                PADDING_ID: int = None, ## required for initialization if `model_type` is not provided.

                ## For inheritance & initialization states
                past_tok_ids: List[torch.Tensor] = None,  ## It saves all the token ids corresponding to the saved KVs for all layers in SepCache.                
                key_cache: List[torch.Tensor] = None,          
                value_cache: List[torch.Tensor] = None,

                ## For debugging
                PRINT_KV_RATIO_INSIDE: bool = False,
                print_KV_inside_per_steps: int = 1000,   
                _seen_tokens: int = 0, 
                _kept_kv_ratio: List[Tuple[int]] = None,
                
                ### For positional encoding shifting
                APPLY_PE_SHIFT: bool = False,
                APPLY_PES_INSIDE: bool = True,
                _shifted_position_ids:  List[torch.Tensor] = None,
                _rope_unsqueeze_dim: int = 1, ## The unsqueeze_dim when applying RoPE.
                _rope_seq_dim: int=1, ## The seq_len dimension for the `cos` or `sin` tensors.
                pe_scaling_factor:float = 1.0,
                pe_dim:int=128, ## The number of dims for positional encoding. Typically, just set the `head_dim` to this.
                max_position_embeddings: int = 8192, 
                base: int=10000,  ## The base for RoPE.               
                
                ## For basic transformer architecture
                k_seq_dim: int=2, ## The dimension for seq_len in key tensors
                v_seq_dim: int=2, ## The dimension for seq_len in value tensors
                layer_num: int = None, ## required for initialization

                model_type: str = None,  ## The model type for running the example. choose from ['llama', 'pythia','falcon'].
                device = None    
    ) -> "SepCache":
        """Deprecated: Converts a cache in the legacy cache format into `SepCache`."""   

        if past_key_values is not None:
            assert len(past_key_values)==0, f"`from_legacy_cache` function is deprecated. You can only use it when `past_key_values=None` or `past_key_values` is empty, in which case, `from_legacy_cache` is equivalent to the `__init__` function."        
            past_key_values = None

        assert past_key_values is None, f"`from_legacy_cache` function is deprecated. You can only use it when `past_key_values=None` or `past_key_values` is empty, in which case, `from_legacy_cache` is equivalent to the `__init__` function."        
        

        if past_key_values is not None: ## Deprecated
            key_cache = []
            value_cache = []               
            
            for i, kv in enumerate(past_key_values):
                if i == 0:
                    past_tok_ids = [] if len(kv) == 4  else past_tok_ids       

                if len(kv) == 4:
                    k, v, p_tok_ids, _seen_tokens  = kv
                    key_cache.append(k)
                    value_cache.append(v)
                    past_tok_ids.append(p_tok_ids)
                    _seen_tokens = _seen_tokens
                elif len(kv) == 2:
                    k, v = kv
                    key_cache.append(k)
                    value_cache.append(v)
                    
        cache = cls(
                ## For SepLLM                
                init_cache_size = init_cache_size,        
                sep_cache_size = sep_cache_size,
                local_size = local_size, 
                cache_size = cache_size,                    
                SEP_ACCUMULATION = SEP_ACCUMULATION,
                USE_MAX_SEP_CACHE = USE_MAX_SEP_CACHE,
                SEP_PADDING_IN_BATCH = SEP_PADDING_IN_BATCH,
                separator_token_ids = separator_token_ids,
                PADDING_ID = PADDING_ID,

                ## For inheritance & initialization states
                past_tok_ids = past_tok_ids,  ## It saves all the token ids corresponding to the saved KVs for all layers in SepCache        
                key_cache = key_cache,          
                value_cache = value_cache,

                ## For debugging
                PRINT_KV_RATIO_INSIDE = PRINT_KV_RATIO_INSIDE,
                print_KV_inside_per_steps = print_KV_inside_per_steps,   
                _seen_tokens = _seen_tokens, 
                _kept_kv_ratio = _kept_kv_ratio,
                
                ### For positional encoding shifting
                APPLY_PE_SHIFT = APPLY_PE_SHIFT,
                APPLY_PES_INSIDE = APPLY_PES_INSIDE,
                _shifted_position_ids = _shifted_position_ids,
                _rope_unsqueeze_dim = _rope_unsqueeze_dim,
                _rope_seq_dim = _rope_seq_dim, 
                pe_scaling_factor = pe_scaling_factor,
                pe_dim = pe_dim,
                max_position_embeddings = max_position_embeddings, 
                base = base,                 
                
                ## For basic transformer architecture
                k_seq_dim = k_seq_dim,
                v_seq_dim = v_seq_dim,
                layer_num = layer_num,
                
                model_type = model_type,  
                device = device,   
        )

        return cache

    
    def to_legacy_cache(self) -> Tuple[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, int]]: ## Deprecated
        """Deprecated: Converts the `SepCache` instance into the legacy cache format, i.e., tuple."""
        print(">>>>>>>>>>>Warnings: Please try to avoid using this deprecated `to_legacy_cache` function since it will drop many useful parameters or states in SepCache.<<<<<<<<<<<")
        legacy_cache = ()
        for layer_idx in range(len(self.key_cache)):
            legacy_cache += ((self.key_cache[layer_idx], self.value_cache[layer_idx], self.past_tok_ids[layer_idx], self._seen_tokens), )
        return legacy_cache


    def __getitem__(self, layer_idx: int) -> List[Tuple[torch.Tensor]]:
        if layer_idx < len(self):
            return (self.key_cache[layer_idx], self.value_cache[layer_idx])
        else:
            raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}")

    def __iter__(self):
        """
        Support for backwards-compatible `past_key_value` iteration, e.g. `for x in past_key_value:` to iterate over
        keys and values
        """
        for layer_idx in range(len(self)):
            yield (self.key_cache[layer_idx], self.value_cache[layer_idx])

    def __len__(self):
        """
        Support for backwards-compatible `past_key_value` length, e.g. `len(past_key_value)`. This value corresponds
        to the number of layers in the model.
        """
        if self.key_cache is not None:
            return len(self.key_cache)
        else:
            return 0

    @property
    def seen_tokens(self):
        if hasattr(self, "_seen_tokens"):
            return self._seen_tokens
        else:
            return None



class KVUsageCounter:
    def __init__(self, PRINT_KV_per_ITERs:int = 100):
        """
        For detailed usage instructions, please refer to sepllm.github.io
        """
        self._total_kept_kv_ratio = (0, 0)
        self._printing_counter = 0
        self.PRINT_KV_per_ITERs = PRINT_KV_per_ITERs

    def accumulate_historical_kv_stats(self, cache: SepCache = None) -> None:
        assert cache is not None, f"The KV cache object (of the class SepCache) must be given."
        assert hasattr(cache, "_kept_kv_ratio"), f"The cache object must have the attribute _kept_kv_ratio."
        assert hasattr(cache, "layer_num"), f"The cache object must have the attribute layer_num."
        
        
        assert len(cache._kept_kv_ratio) == cache.layer_num, f"The length ({cache._kept_kv_ratio}) of cache object's _kept_kv_ratio attribute must be equal to layer_num ({cache.layer_num})"
        for ly in range(cache.layer_num):
            self._total_kept_kv_ratio = (self._total_kept_kv_ratio[0] + cache._kept_kv_ratio[ly][0],   self._total_kept_kv_ratio[1] + cache._kept_kv_ratio[ly][1] )
        self._printing_counter += 1

    def WHETHER_2_PRINT(self) -> bool:
        return (self._printing_counter % self.PRINT_KV_per_ITERs) == 0 


    def print_KV_ratio(self) -> None:       
        print(f"######################## The KVs for ALL layers: (KV number kept for predicting current token)/(Total seen KV number) ########################")             
        print(f"########################>>>>>>>>>>> [Kept Tokens, Seen Tokens] : {self._total_kept_kv_ratio}, Ratio: { (self._total_kept_kv_ratio[0]+1e-6) / (self._total_kept_kv_ratio[1]+1e-6):.4f} <<<<<<<<<<<<##########################")    
        print(f"######################## -------------------------------------------------------------------------------------------- ########################")

#############################################################End################################################################



##################################################### Monkey Patch Utils #######################################################
def get_full_class_import_path(obj):
    """Get the complete class import path of an object"""
    # Get the class of the object
    cls = obj.__class__
    
    # Get the module name where the class is defined
    module = cls.__module__
    
    # Get the qualified name of the class (including outer classes)
    qualname = cls.__qualname__
    
    # Handle nested classes (e.g., ClassA.ClassB)
    if '.' in qualname:
        # Replace nested class separators
        class_path = f"{module}.{qualname.replace('.', '_')}"
    else:
        class_path = f"{module}.{qualname}"
    
    return class_path


def get_importable_class_path(obj):
    """Get the directly importable class path (handling special cases and dynamic classes)"""
    cls = obj.__class__
    module = cls.__module__
    qualname = cls.__qualname__
    
    # Handle built-in types
    if module == 'builtins':
        return qualname
    
    # Handle dynamically generated classes (e.g., functools.partial)
    if not hasattr(cls, '__module__') or module is None:
        return f"<dynamic class {qualname}>"
    
    # Handle nested classes
    if '.' in qualname:
        # Try to import the parent module to validate the path
        try:
            import importlib
            parent_module = importlib.import_module(module)
            
            # Follow the qualified name path
            parts = qualname.split('.')
            current = parent_module
            for part in parts:
                current = getattr(current, part)
            
            # If successful access, return the original path
            return f"{module}.{qualname}"
        except (ImportError, AttributeError):
            # Fallback: use underscore connection
            return f"{module}.{qualname.replace('.', '_')}"
    
    return f"{module}.{qualname}"


def monkey_patch_by_class_path(model, new_forward):
    """Perform monkey patching through class path"""
    # Get the complete class path
    class_path = get_importable_class_path(model)
    
    # Dynamically import the class
    try:
        import importlib
        module_path, class_name = class_path.rsplit('.', 1)
        module = importlib.import_module(module_path)
        target_class = getattr(module, class_name)
        
        # Save the original method
        if not hasattr(target_class, '_original_forward'):
            target_class._original_forward = target_class.forward
        
        # Apply the patch
        target_class.forward = new_forward
        
        # Update the method binding of the current instance
        model.forward = types.MethodType(target_class.forward, model)
        
        return f"Successful Monkey Patch: {class_path}.forward"
    
    except (ImportError, AttributeError, ValueError) as e:
        return f"Patch Failed: {str(e)}"


def find_inner_attribute(obj,  attr_name_list: List[str], default_type = PreTrainedModel ):
    # try to find the attribute of the name in `attr_name_list`.
    for target_attr_name in attr_name_list:
        if hasattr(obj, target_attr_name):
            return getattr(obj, target_attr_name)
        
    # else: try to find the attribute of the type `default_type`
    for attr_name in dir(obj): 
        attr_value = getattr(obj, attr_name)   
        if isinstance(attr_value, default_type):
            return attr_value

    raise AttributeError(f"In the {obj} object, there is no attribute whose name matches any name in {attr_name_list} or whose type is {default_type}.")


def find_attribute_name(obj, name_pattern_list: List[str], exclude_pattern_list: List[str], match_type = nn.Module):
    for attr_name in dir(obj): 
        attr_value = getattr(obj, attr_name)   
        for pattern in name_pattern_list:
            for ex_pattern in exclude_pattern_list:
                if isinstance(attr_value, match_type) and (pattern.lower() in attr_value.__class__.__name__.lower()) and ( ex_pattern.lower() not in attr_value.__class__.__name__.lower() ):
                    return attr_value
                elif isinstance(attr_value, match_type) and (pattern.lower() in attr_name.lower()) and (ex_pattern.lower() not in attr_name.lower() ):
                    return attr_value

    raise AttributeError(f"In the {obj} object, there is no attribute whose name matches any pattern in {name_pattern_list} and excludes any pattern in {exclude_pattern_list}, and whose type is {match_type}.")



def monkey_patching(model_obj, 
                    model_atten_forward , ## The `forward` function used to patch.
                    possible_inner_model_names: List[str] = ["model", "transformer", "gpt_neox"] , # In `XXXForCausalLM` class, the possible name of internal attribute for model. e.g.,  "model", "transformer", "gpt_neox", etc.
                    possible_layers_names: List[str] = ["layers", "h" ],  # In `XXXModel` class,  the possible name of internal attribute for decoder layers, e.g.,  "layers", "h", etc.
                    atten_attr_name_pattern_list: List[str] = ["attention", "self_attn"],  # In `XXXDecoderLayer` class, the possible name of internal attribute for self-attention, e.g.,  "attention", "self_attn", etc.
                    atten_attr_name_pattern_exclude: List[str] = ["norm", "layer"], # In `XXXDecoderLayer` class, the impossible name patterns (i.e., the patterns to be excluded) of internal attribute for self-attention module class, e.g., "norm" , etc. Sometimes, there will be some attributes like "post_attention_norm" and we do not want modify the `forward` function of it - we want to modify the `forward` function of `XXXAttention`. So, we need to exclude attribute name patterns like "norm" to accurately find the correct "forward" function to replace.
                    verbose = True):
    
    """
    This `monkey_patching` function is to
        - find the `forward` function of the `XXXAttention` class.
        - replace all the related `forward` functions of the instances of `XXXAttention` class with `model_atten_forward`.
    """
    
    ## To avoid the argument check failure, i.e., let "sepllm_kwargs" pass the check.
    transformers.generation.GenerationMixin._validate_model_kwargs = _validate_model_kwargs    

    ## Get inner model obj
    inner_model_type = PreTrainedModel
    inner_model = find_inner_attribute(model_obj, possible_inner_model_names, inner_model_type)
    
    ## Get the decoder layers (`nn.ModuleList`) obj
    layers_type = nn.ModuleList
    model_layers = find_inner_attribute(inner_model, possible_layers_names, layers_type)
    
    ## Replace all the related `forward` functions of XXXAttention class's instances.
    for i, decoder_layer in enumerate(model_layers):
        self_attn_module = find_attribute_name(decoder_layer, atten_attr_name_pattern_list, atten_attr_name_pattern_exclude, nn.Module)
        result = monkey_patch_by_class_path(self_attn_module, model_atten_forward)
        if verbose:
            decoder_class_name = get_importable_class_path(decoder_layer)
            print(f"For Layer {i}'s `{decoder_class_name}`: {result}")

    return model_layers
#############################################################End################################################################


def str2list(s : str, sep = ';'):
    if isinstance(s, str):
        res =  s.split(sep)
        return [ int(i) for i in res ]
    else:
        return s


def generate(model,                          
            ## For SepCache                              
            init_cache_size: Union[int, List] = 4,        
            sep_cache_size: Union[int, List] = 128,
            local_size: Union[int, List]=256, 
            cache_size: Union[int, List]=512,    
            SEP_ACCUMULATION: bool = True,
            USE_MAX_SEP_CACHE: bool = False,
            SEP_PADDING_IN_BATCH: bool = False,
            separator_token_ids: List[int] = None, ## required for initialization if `model_type` is not provided.
            PADDING_ID: int = None, ## required for initialization if `model_type` is not provided.

            ## For inheritance & initialization states
            past_tok_ids: List[torch.Tensor] = None,  ## It saves all the token ids corresponding to the saved KVs for all layers in SepCache.                
            key_cache: List[torch.Tensor] = None,          
            value_cache: List[torch.Tensor] = None,

            ## For debugging
            PRINT_KV_RATIO_INSIDE: bool = False,
            print_KV_inside_per_steps: int = 1000,   
            _seen_tokens: int = 0, 
            _kept_kv_ratio: List[Tuple[int]] = None,
            
            ### For positional encoding shifting
            APPLY_PE_SHIFT: bool = False,
            APPLY_PES_INSIDE: bool = False,
            _shifted_position_ids:  List[torch.Tensor] = None,
            _rope_unsqueeze_dim: int = 1, ## The unsqueeze_dim when applying RoPE.
            _rope_seq_dim: int=1, ## The seq_len dimension for the `cos` or `sin` tensors.
            pe_scaling_factor:float = 1.0,
            pe_dim:int=128, ## The number of dims for positional encoding. Typically, just set the `head_dim` to this.
            max_position_embeddings: int = 8192, 
            base: int=10000,  ## The base for RoPE.               
            
            ## For basic transformer architecture
            k_seq_dim: int=2, ## The dimension for seq_len in key tensors
            v_seq_dim: int=2, ## The dimension for seq_len in value tensors
            layer_num: int = None, ## required for initialization

            model_type: str = 'llama',  ## The model type for running the example. choose from ['llama', 'pythia','falcon'].
            device = None,   

            ## For verbosity of monkey patching
            monkey_patch_verbose: bool = False,

             **kwargs
             ):
    """Custom generate function for SepCache.

    A cache as described in the [SepLLM paper - ICML 2025](https://arxiv.org/abs/2412.12094). In the training phase, 
    SepLLM condenses the segment information into the KV of the separator that divides the segment. In the inference phase, the 
    corresponding SepCache only needs to store the KVs of initial tokens, separator tokens, and recent tokens for generation.

    It stores the Key and Value states as lists of tensors, two lists for each layer. The expected shape for each tensor is
    `[batch_size, num_heads, seq_len, head_dim]`.

    Frequently-Used Parameters:

        `init_cache_size: Union[int, List]`:
            The maximum number of KVs to be stored for initial tokens.
            In the paper, the hyperparameter `a` is an abbreviated alias for `self.init_cache_size`.                
                
        `sep_cache_size: Union[int, List]`:
            The maximum number of KVs to be stored for separator tokens.
            In the paper, the hyperparameter `s` is an abbreviated alias for `self.sep_cache_size`.

        `local_size: Union[int, List]`: 
            The maximum number of KVs to be stored for local tokens (i.e., sliding window).
            In the paper, the hyperparameter `w` is an abbreviated alias for `self.local_size`.

        `cache_size: Union[int, List]`:    
            The maximum number of KVs to be stored for all the tokens, i.e., the size for the whole KV cache.  
            In the paper, the hyperparameter `c` is an abbreviated alias for `self.cache_size`.

        Concerning these four parameters above:
            When a list is passed (its length must be `layer_num`), it represents different values for each layer. 
            When an integer is passed, it means the setting is the same for all layers.
        
        
        `USE_MAX_SEP_CACHE: bool`: 
            If True, it means we only keep at most `self.sep_cache_size` seperators' KVs.  
            If the number exceeds this limit, older separator's KVs will be discarded, keeping only the most recent `self.sep_cache_size` KVs. 
            In the paper, the hyperparameter `s` is an abbreviated alias for `self.sep_cache_size`.
          
        `separator_token_ids: List[int]`:
            The token ids of the separator tokens for the current model's tokenizer.            
            We have some examples, such as the Llama-3 series models, where setting `model_type='llama'` allows you 
                to skip setting `separator_token_ids` and `PADDING_ID` (SepCache will auto-fill them).

        `PADDING_ID: int`:
            The token id of the padding token. You can just set `PADDING_ID` to the id of "<|endoftext|>" token of the tokenizer for the pretrained model.

    Important Note:
        When `cache_size` and `local_size` are set to infinity (i.e., sufficiently large positive integers), and `USE_MAX_SEP_CACHE` is `False`, `SepCache` degenerates into a regular Cache. 
        However, you must always ensure that `init_cache_size` + `sep_cache_size` + `local_size` + `left_padding_offset` < `cache_size`. 
        Here, `left_padding_offset` denotes the number of padding tokens in the record with the largest left paddings within a runtime batch. `left_padding_offset` can only be determined at runtime.        
        To guarantee the above inequality always holds during runtime, when setting, you can intentionally create a sufficient margin between both sides of the following inequality:
            `init_cache_size` + `sep_cache_size` + `local_size`  < `cache_size`, i.e., `a`+`s`+`w`<`c` in the [SepLLM paper - ICML 2025]
            to leave room for `left_padding_offset`.

        Please refer to the `__init__` function's comments for more details on the parameters.
            
    Example:

        ```python        
        >>> from transformers import AutoTokenizer, AutoModelForCausalLM, 
        >>> from .custom_generate.generate import SepCache
        >>> import torch
        >>> from huggingface_hub import login
        >>> login("hf_xxxXXXxxx")


        >>> def to_cuda(a_dict: dict) -> dict:
        >>>    new_dict = {}    
        >>>    for k,v in a_dict.items():
        >>>        if isinstance(v, torch.Tensor):
        >>>            new_dict[k] = v.cuda()
        >>>        else:
        >>>            new_dict[k] = v
        >>>    return new_dict

        >>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct", attn_implementation="flash_attention_2", device_map="cuda:0")
        >>> model.bfloat16().cuda()
        >>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3-8B-Instruct")
        >>> inputs = tokenizer(text="My name is Llama 3", return_tensors="pt")
        >>> inputs = to_cuda(inputs)
        >>> # Prepare a cache and pass it to model's forward; `layer_num` is the number of layers for the pretrained model.
        >>> past_key_values = SepCache(init_cache_size=4, sep_cache_size=128, local_size=256, cache_size=512, layer_num=32, USE_MAX_SEP_CACHE=True, model_type='llama')
        >>> # `separator_token_ids` and `PADDING_ID` must also be provided if you are not using `model_type='llama'` like this demo.
        >>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
        >>> outputs.past_key_values # access SepCache filled with keys/values
        SepCache()
        ```

        ```python
        >>> ## When using the `update` function of SepCache to update the keys/values and the past token ids (necessary in SepCache), the current `input_ids` must also be provided.        
        >>> key_states, value_states = past_key_values.update(                
                    key_states = key_states,
                    value_states = value_states,    
                    input_ids = input_ids,
                    layer_idx = layer_idx,     
                    PREFILLING_FLAG = q_len > 1, ## `q_len` is the sequence length of the current `query_states`
                    )

        ```
        For detailed usage instructions, please refer to https://github.com/HKUDS/SepLLM
    """

    # 0. Monkey Patching towards the "forward" function of `XXXAttention` class in order to pass `input_ids` to the `update` function of `SepCache` when calling it.   
    model_layers = monkey_patching(model,  model_atten_forward=llama_atten_forward, verbose=monkey_patch_verbose)
    separator_token_ids = str2list(separator_token_ids)
    

    # 1. General sanity checks
    # 1.a. A few arguments are not allowed, especially arguments that control caches.
    generation_config = kwargs.get("generation_config")
    default_global_generation_config = GenerationConfig()
    default_model_generation_config = model.generation_config
    for arg in UNSUPPORTED_GENERATION_ARGS:
        has_custom_gen_config_arg = (
            generation_config is not None
            # = and not (match global default or match model-specific default)
            and not (
                getattr(default_model_generation_config, arg) == getattr(generation_config, arg)
                or getattr(default_global_generation_config, arg) == getattr(generation_config, arg)
            )
        )
        kwargs_has_arg = arg in kwargs and kwargs[arg] is not None
        if kwargs_has_arg or has_custom_gen_config_arg:
            raise ValueError(
                f"`{arg}` is set, but it's not supported in this custom generate function. List of "
                f"unsupported arguments: {UNSUPPORTED_GENERATION_ARGS}"
            )

    
    
    # 1.b. The model must be decoder-only
    if model.config.is_encoder_decoder:
        raise ValueError("This custom generate function only works with decoder-only models")

    # 1.c. compatibility with transformers>=4.52: we must pop `custom_generate` from kwargs, otherwise it will result
    # in an infinite loop when we call `model.generate`. This is solved in transformers 4.53.
    kwargs.pop("custom_generate", None)


    sepllm_kwargs = {}
    sepllm_kwargs["input_ids"] = kwargs["input_ids"] ## `input_ids` must be passed to the `update` function of `SepCache` when calling it.
    kwargs["sepllm_kwargs"] = sepllm_kwargs

    # 2. Generate with SepCache
    # 2.a. prepare the cache, if it was not passed.
    past_key_values = kwargs.pop("past_key_values", None)
    if past_key_values is None:
        past_key_values = SepCache(                     
            ## For SepCache                              
            init_cache_size = init_cache_size,        
            sep_cache_size = sep_cache_size,
            local_size = local_size, 
            cache_size = cache_size,    
            SEP_ACCUMULATION = SEP_ACCUMULATION,
            USE_MAX_SEP_CACHE = USE_MAX_SEP_CACHE,
            SEP_PADDING_IN_BATCH = SEP_PADDING_IN_BATCH,
            separator_token_ids = separator_token_ids, ## required for initialization if `model_type` is not provided.
            PADDING_ID = PADDING_ID, ## required for initialization if `model_type` is not provided.

            ## For inheritance & initialization states
            past_tok_ids = past_tok_ids,  ## It saves all the token ids corresponding to the saved KVs for all layers in SepCache.                
            key_cache = key_cache,          
            value_cache = value_cache,

            ## For debugging
            PRINT_KV_RATIO_INSIDE = PRINT_KV_RATIO_INSIDE,
            print_KV_inside_per_steps = print_KV_inside_per_steps,   
            _seen_tokens = _seen_tokens, 
            _kept_kv_ratio = _kept_kv_ratio,
            
            ### For positional encoding shifting
            APPLY_PE_SHIFT = APPLY_PE_SHIFT,
            APPLY_PES_INSIDE = APPLY_PES_INSIDE,
            _shifted_position_ids = _shifted_position_ids,
            _rope_unsqueeze_dim = _rope_unsqueeze_dim, ## The unsqueeze_dim when applying RoPE.
            _rope_seq_dim =_rope_seq_dim, ## The seq_len dimension for the `cos` or `sin` tensors.
            pe_scaling_factor = pe_scaling_factor,
            pe_dim = pe_dim, ## The number of dims for positional encoding. Typically, just set the `head_dim` to this, i.e., model.config.hidden_size // model.config.num_attention_heads
            max_position_embeddings = max_position_embeddings, # i.e.,  model.config.max_position_embeddings                               
            base = base,  ## The base for RoPE.               
            
            ## For basic transformer architecture
            k_seq_dim = k_seq_dim, ## The dimension for seq_len in key tensors
            v_seq_dim = v_seq_dim, ## The dimension for seq_len in value tensors
            layer_num = len(model_layers), ## required for initialization. model.config.num_hidden_layers

            model_type = model_type,  ## The model type for running the example. choose from ['llama', 'pythia','falcon'].
            device = device,    
            )

    elif not isinstance(past_key_values, SepCache):
        raise ValueError(f"`past_key_values` must be a `SepCache` instance, got a {type(past_key_values)} instance")

    # 2.b. generate with the cache
    kwargs["use_cache"] = True
    generation_outputs = model.generate(**kwargs, past_key_values=past_key_values)
    return generation_outputs