Update metadata for new model weights
Browse files
README.md
CHANGED
|
@@ -3,11 +3,43 @@
|
|
| 3 |
license: apache-2.0
|
| 4 |
library_name: span-marker
|
| 5 |
tags:
|
| 6 |
-
- span-marker
|
| 7 |
-
- token-classification
|
| 8 |
-
- ner
|
| 9 |
-
- named-entity-recognition
|
| 10 |
pipeline_tag: token-classification
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
# SpanMarker for Named Entity Recognition
|
|
@@ -28,7 +60,7 @@ You can then run inference with this model like so:
|
|
| 28 |
from span_marker import SpanMarkerModel
|
| 29 |
|
| 30 |
# Download from the 🤗 Hub
|
| 31 |
-
model = SpanMarkerModel.from_pretrained("
|
| 32 |
# Run inference
|
| 33 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
| 34 |
```
|
|
|
|
| 3 |
license: apache-2.0
|
| 4 |
library_name: span-marker
|
| 5 |
tags:
|
| 6 |
+
- span-marker
|
| 7 |
+
- token-classification
|
| 8 |
+
- ner
|
| 9 |
+
- named-entity-recognition
|
| 10 |
pipeline_tag: token-classification
|
| 11 |
+
model-index:
|
| 12 |
+
- name: >-
|
| 13 |
+
SpanMarker w. bert-base-cased on coarsegrained, supervised FewNERD by Tom
|
| 14 |
+
Aarsen
|
| 15 |
+
results:
|
| 16 |
+
- task:
|
| 17 |
+
type: token-classification
|
| 18 |
+
name: Named Entity Recognition
|
| 19 |
+
dataset:
|
| 20 |
+
type: DFKI-SLT/few-nerd
|
| 21 |
+
name: coarsegrained, supervised FewNERD
|
| 22 |
+
config: supervised
|
| 23 |
+
split: test
|
| 24 |
+
revision: 2e3e727c63604fbfa2ff4cc5055359c84fe5ef2c
|
| 25 |
+
metrics:
|
| 26 |
+
- type: f1
|
| 27 |
+
value: 0.7081
|
| 28 |
+
name: F1
|
| 29 |
+
- type: precision
|
| 30 |
+
value: 0.7378
|
| 31 |
+
name: Precision
|
| 32 |
+
- type: recall
|
| 33 |
+
value: 0.6808
|
| 34 |
+
name: Recall
|
| 35 |
+
datasets:
|
| 36 |
+
- DFKI-SLT/few-nerd
|
| 37 |
+
language:
|
| 38 |
+
- en
|
| 39 |
+
metrics:
|
| 40 |
+
- f1
|
| 41 |
+
- recall
|
| 42 |
+
- precision
|
| 43 |
---
|
| 44 |
|
| 45 |
# SpanMarker for Named Entity Recognition
|
|
|
|
| 60 |
from span_marker import SpanMarkerModel
|
| 61 |
|
| 62 |
# Download from the 🤗 Hub
|
| 63 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-tiny-fewnerd-coarse-super")
|
| 64 |
# Run inference
|
| 65 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
| 66 |
```
|